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Abstract
This paper derives statistical guarantees for the
performance of Graph Neural Networks (GNNs)
in link prediction tasks on graphs generated by a
graphon. We propose a linear GNN architecture
(LG-GNN) that produces consistent estimators
for the underlying edge probabilities. We estab-
lish a bound on the mean squared error and give
guarantees on the ability of LG-GNN to detect
high-probability edges. Our guarantees hold for
both sparse and dense graphs. Finally, we demon-
strate some of the shortcomings of the classical
GCN architecture, as well as verify our results on
real and synthetic datasets.

1. Introduction
Graph Neural Networks (GNNs) have emerged as a pow-
erful tool for link prediction (Zhang & Chen, 2018; Zhang,
2022). A significant advantage of GNNs lies in their adapt-
ability to different graph types. Traditional link prediction
heuristics tend to presuppose network characteristics. For
example, the common neighbors heuristic presumes that
nodes that share many common neighbors are more likely to
be connected, which is not necessarily true in biological net-
works (Kovács, 2019). In contrast, GNNs inherently learn
predictive features through the training process, presenting
a more flexible and adaptable method for link prediction.

This paper provides statistical guarantees for link prediction
using GNNs, in graphs generated by the graphon model.
A graphon is specified by a symmetric measurable kernel
function W : Ω2 → [0, 1]. A graph Gn = (Vn, En) with
the vertex set Vn = {1, 2, · · · , n} is sampled fromW as fol-
lows: (i) each vertex i ∈ Vn draws latent feature (ωi)

i.i.d∼ µ
for some probability distribution µ on Ω ⊂ Rq; (ii) the
edges of Gn are generated independently and with prob-
ability Wn,i,j := ρn ·W (ωi, ωj), where ρn ∈ (0, 1] is a
constant called the sparsifying factor1.

1Department of Statistics, Harvard University 2Department of
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1Throughout the paper, we will assume (ωi) ∼ Unif[0, 1]. This

The graphon model includes various widely researched
graph types, such as Erdos-Renyi, inhomogeneous random
graphs, stochastic block models, degree-corrected block
models, random exponential graphs, and geometric random
graphs as special cases; see (Lovász, 2012) for a more de-
tailed discussion.

This paper’s key contribution is the analysis of a linear
Graph Neural Network model (LG-GNN) which can prov-
ably estimate the edge probabilities in a graphon model.
Specifically, we present a GNN-based algorithm that yields
estimators, denoted as p̂i,j , that converge to true edge proba-
bilities ρnW (ωi, ωj). Crucially, these estimators have mean
squared error converging to 0 at the rate on→∞(ρ2n). To our
knowledge, this work is the first to rigorously character-
ize the ability of GNNs to estimate the underlying edge
probabilities in general graphon models.

The estimators p̂i,j are constructed in two main steps. We
first employ LG-GNN (Algorithm 1), to embed the vertices
of Gn. Concretely, for each vertex i ∈ [n], LG-GNN com-
putes a set Λi = {λ0i , λ1i , . . . , λLi }, where λki ∈ Rdn and
dn is the embedding dimension. Then, Λi,Λj are used to
construct estimators q̂(k)i,j for the moments of W . We refer
the reader to Section 4 for the formal definition of the mo-
ments. Intuitively, the kth moment W (k)

n,i,j represents the
probability that there is a path of length k between vertices
with latent features ωi and ωj in Gn.

The next step is to show that when the number of distinct
nonzero eigenvalues of W , denoted mW , is finite, then the
edge probabilities Wn,i,j can be written as a linear func-
tion of the moments W (2:mW+1)

n,i,j . This naturally motivates
Algorithm 2, which learn the Wn,i,j’s from the moment
estimators q̂(2:mW+1)

i,j , using a constrained regression. The
regression coefficients β̂n,mW are then used to produce esti-
mators p̂i,j for Wn,i,j .

The main result of the paper (stated in Theorem 4.4) presents
the convergence rate of the mean square error of β̂n,mW . It
shows that if L, the number of message-passing layers in

is without loss of generality. For any graphon W̃ with features in
some arbitrary Ω ⊂ Rq sampled from µ on Ω, there exists some
graphon W with latent features drawn from Unif[0, 1] so that the
graphs generated from these two graphons are equivalent in law.
See Remark 4 in (Davison & Austern, 2023) for more details.
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LG-GNN, is at least mW − 1, then the mean square error
converges to 0. That implies that our estimators for the edge
probabilities Wn,i,j are consistent. For L < mW − 1, the
theorem provides the rate at which the mean square error
decreases when L increases. The second main result, stated
in Proposition 4.5, gives statistical guarantees on how well
LG-GNN can detect in-community edges in a symmetric
stochastic block model. A notable feature of this theorem
is that the implied convergence rate is much faster than
that of Theorem 4.4, which demonstrates mathematically
that ranking high and low probability edges is easier than
estimating the underlying probabilities of edges.

Finally, we would like to highlight two key aspects of the
results of the paper. Firstly, our statistical guarantees for
edge prediction are proven for scenarios when node features
are absent and the initial node embeddings λ0i are chosen
at random. This underscores that effective link prediction
can be achieved solely through the appropriate selection of
GNN architecture, even in the absence of additional node
data. The second point relates to graph sparsity: although
graphons typically produce dense graphs, introducing the
sparsity factor ρn results in vertex degrees of O(ρn · n),
facilitating the exploration of sparse graphs. Our findings
are pertinent for log(n)/n ≪ ρn ≤ 1. Note that a spar-
sity of log(n)/n is the necessary threshold for connectivity
(Spencer, 2001), highlighting the generality of our results.

While the primary focus of this paper is theoretical, we
complement our theoretical analysis with experimental eval-
uations on real-world datasets (specifically, the Cora dataset)
and graphs derived from random graph models. Our empiri-
cal observations reveal that in scenarios where node features
are absent, LG-GNN exhibits performance comparable to
the traditional Graph Convolutional Network (GCN) on sim-
ple random graphs, and surpasses GCN in more complex
graphs sampled from graphons. Additionally, LG-GNN
presents two further benefits: LG-GNN does not involve
any parameter tuning (e.g., through the minimization of a
loss function), resulting in significantly faster operation, and
it avoids the common oversmoothing issues associated with
the use of numerous message-passing layers.

1.1. Organization of the Paper

Section 2 discusses related works and introduces the moti-
vation for our paper. Section 3 introduces our notation and
presents an outline for our exposition. Section 4 presents
our main results and Section 5 states a negative result for
naive GNN architectures with random embedding initializa-
tion. Lastly, Section 6 discusses the issues of identifiability,
and Section 7 presents our experimental results.

2. Related Works
Link prediction on graphs have a wide range of applications
in domains ranging from social network analysis to drug
discovery (Hasan & Zaki, 2011; Abbas et al., 2021). A sur-
vey of techniques and applications can be found in (Kumar
et al., 2020; Martı́nez et al., 2016; Djihad Arrar, 2023).

Much of the existing theory on GNNs is regarding their
expressive power. For example, (Xu et al., 2018; Morris
et al., 2021) show that GNNs with deterministic node ini-
tializations have expressive power bounded by that of the
1-dimensional Weisfeiler-Lehman (WL) graph isomorphism
test. Generalizations such as k-GNN (Morris et al., 2021)
have been proposed to boost the expressive power higher in
the WL-hierarchy. The Structural Message Passing GNN
(SGNN) (Vignac et al., 2020) was also proposed and was
shown to be universal on graphs with bounded degrees, and
converges to continuous ”c-SGNNs” (Keriven et al., 2021),
which were also shown to be universal on many popular
random graph models. Lastly, (Abboud et al., 2020) showed
that GNNs that use random node initializations are univer-
sal, in that they can approximate any function defined on
graphs with fixed order.

A recent wave of works focus on deriving statistical guar-
antees for graph representation algorithms. A common
data-generating model for the graph is a graphon model
(Lovász & Szegedy, 2006; Borgs et al., 2008; 2012). A
large literature has been devoted to establishing guarantees
for community detection on graphons such as the stochastic
block model; see (Abbe, 2018) for an overview. For this
task, spectral embedding methods have long been proposed
(see (Deng et al., 2021; Ma et al., 2021) for some recent
examples). Lately, statistical guarantees for modern random
walk-based graph representation learning algorithms have
also been obtained. Notably (Davison & Austern, 2021;
Barot et al., 2021; Qiu et al., 2018; Zhang & Tang, 2021)
characterize the asymptotic properties of the embedding
vectors obtained by deepwalk, node2vec, and their succes-
sors and obtain statistical guarantees for downstream tasks
such as edge prediction. Recently, some works also aim
at obtaining learning guarantees for GNNs. Stability and
transferability of certain untrained GNNs have been estab-
lished in (Ruiz et al., 2021; Maskey et al., 2023; Ruiz et al.,
2023; Keriven et al., 2020). For example (Keriven et al.,
2020) shows that for relatively sparse graphons, the em-
bedding produced by an untrained GNN will converge in
L2 to a limiting embedding that depends on the underly-
ing graphon. They use this to study the stability of the
obtained embeddings to small changes in the training distri-
bution. Other works established generalization guarantees
for GNNs. Those depend respectively on the number of
parameters in the GNN (Maskey et al., 2022), or on the VC
dimension and Radamecher complexity (Esser et al., 2021)
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of the GNN.

Differently from those two lines of work, our paper studies
when link prediction is possible using GNNs, establishes
statistical guarantees for link prediction, and studies how the
architecture of the GNN influences its performance. More
similar to our paper is (Kawamoto et al., 2018), which ex-
ploits heuristic mean-field approximations to predict when
community detection is possible using an untrained GNN.
Note, however, that contrary to us, their results are not rig-
orous and the accuracy of their approximation is instead
numerically evaluated. (Lu, 2021) formally established
guarantees for in-sample community detection for two com-
munity SBMs with a GNN trained via coordinate descent.
However, our work establishes learning guarantees for gen-
eral graphons beyond two-community SBMs, both in the
in-sample and out-sample settings. Moreover, the link pre-
diction task we consider, while related to community detec-
tion, is still significantly different. (Baranwal et al., 2021)
studies node classification for contextual SBMs and shows
that an oracle GNN can significantly boost the performance
of linear classifiers. Another related work (Magner et al.,
2020) studies the capacity of GNN to distinguish differ-
ent graphons when the number of layers grows at least as
L = Ω(log(n)). Interestingly they find that GNN struggles
in differentiating graphons whose expected degree sequence
is not sufficiently heterogeneous, which unfortunately oc-
curs for many graphon models, including the symmetric
SBM. It is interesting to note that in Proposition 5.1 we
will show that this is also the regime where the classical
GCN fails to provide reliable edge probability prediction.
Finally, some learning guarantees have also been derived for
other graph models. Notably (Alimohammadi et al., 2023)
studied the convergence of GraphSAGE and related GNN
architectures under local graph convergence.

3. Notation and Preliminaries
In this section, we present our assumptions, some back-
ground regarding GNNs, and the link prediction goals that
we focus on.

3.1. Assumptions

As mentioned in the introduction, the random graph Gn =
(Vn, En) with the vertex set Vn = {1, 2, · · · , n} is sam-
pled from a graphon W : [0, 1]2 → [0, 1], where each
vertex i ∈ Vn draws latent feature (ωi)

i.i.d∼ Unif[0, 1] and
the edges are generated independently and with probability
Wn,i,j := ρn · W (ωi, ωj). We let A = (aij) denote the
adjacency matrix. When the graph and context are clear,
we let Wn := ρnW , and let Wn,i,j := ρnW (ωi, ωj). We

make the following three assumptions:

log(n)/n≪ ρn ≤ 1 (H1)
∃ δW > 0 s.t. δW ≤W (·, ·) ≤ 1− δW (H2)

W is a Hölder-by-parts function (H3)

We refer the reader to Appendix B for a more detailed dis-
cussion.

3.2. Graph Neural Networks

An L-layer GNN, comprised of L processing layers, trans-
forms graph data into numerical representations, or embed-
dings, of each each vertex. Concretely, a GNN associates
each vertex i ∈ [n] to some λLi ∈ Rdn , where we call dn the
embedding dimension. The learned embeddings are then
used for downstream tasks such as node prediction, graph
classification or link prediction, as investigated in this paper.

A GNN computes the embeddings iteratively through mes-
sage passing. We let λki denote the embedding produced
for vertex i after k GNN iterations. As such, λ0i denotes the
initialization of the embedding for vertex u. The message
passing layer can be expressed generally as

λk+1
i = ϕ

λki , ⊕
j∈N(i)

ψ(λki , λ
k
j , eij)

 ,

where N(i) is the set of neighbors of vertex i, ϕ, ψ are
continuous functions, eij is the feature of the edge (u, v),
and

⊕
is some permutation-invariant aggregation operator,

for example, the sum (Wu et al., 2022).

One classical architecture is the Graph Convolutional Net-
work (GCN) (Kipf & Welling, 2017), whose update equation
is given by

λki = σ

Mk,0λ
k−1
i +Mk,1

∑
j∈N(i)

λk−1
j√

|N(i)| · |N(j)|

 ,

(1)
where σ(·) is a non-linear function and Mk,0,Mk,1 ∈
Mdn×dn

(R) are matrices. These matrices are chosen by
minimizing some empirical risk during a training process,
typically through gradient descent.

In some settings, additional node features for each vertex
are given, and the initialization λ0i is chosen to incorporate
this information. In this paper, we focus on the setting
when no node features are present, and a natural way to
initialize our embeddings λ0i is at random. One of our key
messages is that even without additional node information,
link prediction is provably possible with a correct choice of
GNN architecture.
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3.3. Link Prediction

Given a graph Gn = ([n], En) generated from a graphon,
potential link prediction tasks are (a) to determine which of
the non-edges are most likely to occur, or (b) to estimate the
underlying probability of a particular edge (i, j) according
to the graphon. Here, we make the careful distinction be-
tween two different link prediction evaluation tasks. One
task is regarding the ranking of a set of test edges. Suppose
a set of test edges e1, e2, . . . , ek has underlying probabilities
pe1 ≥ pe2 ≥ · · · ≥ pek according to W . The prediction al-
gorithm assigns a predicted probability p̂ei for each edge ei
and is evaluated on how well it can extract the true ordering
(e.g., the AUC-ROC metric).

Another link prediction task is to estimate the underlying
probabilities of edges in a random graph model. For ex-
ample, in a stochastic block model, a practitioner might
wish to determine the underlying connection probabilities,
as opposed to simply determine the ranking. We will refer
to this task as graphon estimation. It is important to note
that the latter task is generally more difficult.

We also distinguish between two link prediction settings,
i.e., the in-sample and out-sample settings. In in-sample
prediction, the aim is to discover potentially missing edges
between two vertices i, j ∈ [n] already present at training
time. On the contrary, in out-of-sample prediction, the
objective is to predict edges among vertices that were not
present at training. If Ṽ are the set of vertices not present at
training, the goal is to use the trained GNN to predict edges
(i, j) for i, j ∈ Ṽ , or (i, j) for i ∈ Vtrain and j ∈ Ṽ .

4. Main Results
We introduce the Linear Graphon Graph Neural Network,
or LG-GNN in Algorithm 1. The algorithm starts by as-
signing each node i a random feature Zi ∼ 1√

dn
N (0, Idn),

where dn = Ω(1/ρn) is the embedding dimension. The
first message passing layer computes λ0i by summing Zj

for all j ∈ N(i), scaled by 1√
n
. The subsequent layers

normalize the λkj ’s by 1/n before adding them to λki . We
show in Proposition D.3 and Lemma D.4 that this procedure
essentially counts the number of paths between pairs of
vertices. Specifically, E[⟨λk1

i , λ
k2
j ⟩|A, (ωℓ)] is a linear com-

bination of the ”empirical moments” of W (Equation (7)).
The second stage of Algorithm 1 then recovers these em-
pirical moments by decoupling the aforementioned linear
equations. We refer the reader to Appendix D.2 for more
details and intuition behind LG-GNN.

We note that the scaling of 1/
√
n in the first message pass-

ing layer is crucial in allowing the embedding vectors (λkℓ )
to learn information about the latent features (ωℓ) asymptoti-
cally. We show in Proposition 5.1 that without this construc-

tion, the classical GCN is unable to produce meaningful
emebddings with random feature initializations.

4.1. Statistical Guarantees for Moment Estimation

Define the kth moment of a sparsified graphon Wn as
W

(k)
n (x, y) :=∫
[0,1]k−1

Wn(x, t1)Wn(t1, t2) . . .Wn(tk−1, y)dt1:k−1,

which is the probability that there is a path of a length k
between two vertices with latent features x, y, averaging
over the latent features of the vertices in the path. As with
the graphon itself, we denote W (k)

n,i,j :=W
(k)
n (ωi, ωj). The

following proposition shows that the estimators q̂(k)i,j are

consistent estimators for these moments W (k)
n,i,j .

Proposition 4.1. Suppose that the graph Gn = ([n], En)
is generated according to a graphon Wn = ρnW . Suppose
that assumptions (H2) and (H3) hold. Then, with probabil-
ity at least 1 − 5/n − n · exp(−δWρn(n − 1)/3), for all
2 ≤ k ≤ L+ 2,∣∣∣q̂(k)i,j −W

(k)
n,i,j

∣∣∣ ≤ ρk−1
n√
n− 1

log(n)k
[
3ak
√
ρn +

96ak−1√
dn

]
,

(2)

where ak = C(8(k+2))kkk+1
√
k! and C is some absolute

constant.

4.2. Edge Prediction Using the Moments of the Graphon

Proposition 4.1 relates the embeddings produced by LG-
GNN to the underlying graph moments. We show in The-
orem 4.4 that the q̂(k)i,j s can be used to derive consistent
estimators for the underlying edge probability Wn,i,j be-
tween vertices i and j.

The key observation is that for any Hölder-by-parts graphon
W , there exists some m ∈ N ∪ {∞} such that

W (x, y) =

m∑
i=1

µiϕi(x)ϕi(y) ∀x, y ∈ [0, 1]

for some sequence of eigenvalues (µi) with |µi| ≤ 1 and
eigenfunctions (ϕi) orthonormal in L2([0, 1]). This, cou-
pled with the Cayley-Hamilton theorem (Hamilton, 1853),
implies that W can be re-expressed as a linear combina-
tion of its moments. We will refer to the number of distinct
nonzero eigenvalues ofW asmW , which we call the distinct
rank.

Proposition 4.2. Suppose that W : [0, 1]2 → [0, 1] is
a Hölder-by-parts graphon. Then, there exists a vector
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Algorithm 1 LG-GNN architecture
Input: a Graph Gn = ([n], En); L ≥ 0

Output: estimators q̂(k)i,j for the kth moments W (k)
n,i,j .

Sample (Zi)
n
i=1

iid∼ 1√
dn
N (0, Idn

).

GNN Iteration:
for i ∈ [n] do

λ0i ← 1√
n−1

∑n
ℓ=1 aiℓZℓ

end
for k ∈ [L] do

for i ∈ [n] do
λki ← λk−1

i + 1
n−1

∑
ℓ≤n aiℓλ

k−1
ℓ

end
end

Computing Estimators for W (k)
n,i,j:

for i ̸= j do
q̂
(2)
i,j := ⟨λ0i , λ0j ⟩.

end
for k ∈ {3, 4, . . . , L+ 2} do

q̂
(k)
i,j := ⟨λk−2

i , λ0j ⟩ −
∑k−3

r=0

(
k−2
r

)
q̂
(r+2)
i,j

end
Return:

{
(q̂

(2)
ij , q̂

(3)
ij , . . . , q̂

(L+2)
ij )i ̸=j

}
β∗,mW =

(
β∗,mW

1 , β∗,mW

2 . . . , β∗,mW
mW

)
such that for all

(x, y) ∈ [0, 1]2,

W (x, y) =

mW∑
i=1

β∗,mW

i W (i+1)(x, y). (3)

The above suggests the following algorithm for edge predic-
tion using the embedding produced by LG-GNN.

Algorithm 2 LG-GNN edge prediction algorithm
Input: Graph Gn = ([n], En), search space F , threshold
β; L ≥ 0.
Output: Set of predicted edges
Using Algorithm 1, compute q(2:L+2)

i,j := (q̂
(2)
i,j , . . . , q

(L+2)
i,j )

for every vertex i, j
Compute:

β̂n,L+1 = argmin
β∈F

∑
i̸=j

(〈
β, q̂

(2:L+2)
i,j

〉
− ai,j

)2
Compute: p̂i,j :=

〈
β̂n,L+1, q̂

(2:L+2)
i,j

〉
for all i, j

Return: {(i, j)| p̂i,j ≥ γ} the set of predicted edges.

Algorithm 2 estimates the edge probabilities by regressing
the moment estimators q̂(2:L+2)

i,j onto the aij’s. The coeffi-

cients of the regression are chosen through constrained opti-
mization. This is necessary due to high multi-collinearity
among the observations q̂(2:L+2)

i,j . Other methods to control
the multi-collinearity include using Partial Least Squares
(PLS) regression in Algorithm 2. This leads to an alterna-
tive algorithm presented in Algorithm 3, called PLSG-GNN,
that is also evaluated in the experiments section.

Before stating our main theorem, we define a few quantities.

Definition 4.3 (MSE error). For any vector β ∈ Rk, define
the mean squared error

RT (β) = E
[(〈

β, q̂
(2,len(β)+1)
n+1,n+2

〉
−Wn(ωn+1, ωn+2)

)2]
,

where the expectation is taken with respect to the random-
ness in ωn+1, ωn+2. We interpret n + 1, n + 2 as being
two new vertices that were not present at training time. We
also define the following quantity, used in the statement of
Theorem 4.4:

R(β) = E
[(〈

β,W (2,len(β)+1)(x, y)
〉
−W (x, y)

)2]
.

For some set F ⊂ Rk, we can interpret argminβ∈F R(β)
as the “L2 projection” of W (x, y) onto the subspace
spanned by ⟨β,W (2:k+1)(x, y)⟩. In particular, if F
contains a vector β∗,k satisfying Equation (3), then
argminβ∈F R(β) = 0. In the context of Algorithm 2,
this suggests that we can obtain a consistent estimator for
Wn,i,j . Hence, since Proposition 4.2 guarantees that such
a β∗,k exists when mW < ∞, the intuition is that if both
the search space and number of layers F , L are sufficiently
large, then Algorithm 2 should produce estimators p̂i,j that
are consistent.

The following theorem shows that this intuition is indeed
true. It states that p̂i,j is a consistent estimator for the edge
probability Wn,i,j if the number of LG-GNN layers is large
enough, and characterizes its convergence rate. We will
show this when the search space F is a rectangle of the
form F :=

∏L+1
i=1 [− bi

ρi
n
, bi
ρi
n
] ⊂ RL+1 for some bi > 0. We

discuss the implications of this result after its statement.

Theorem 4.4 (Main Theorem). Let Gn = ([n], En) be
sampled from some graphon ρnW , where W satisfies (H2)
and (H3). Take β̂n,L+1 to be the estimators given by
Algorithm 2. Define β∗,L+1 ∈ argminβ∈F R(β) to be
the population minimizer. Then, with probability at least
1− 5/n− n · exp(−δW ρn(n− 1)/3), the MSE converges
at rate

RT (β̂
n,L+1) ≤ R(β∗,L+1) + Õ

(
κ21ρ

2
n√
n

)
+κ1κ2

ρn · log(n)L+1

√
n

[
√
ρn +

1√
dn

]
,
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where κ1 = O((1 − δW )
∑L+1

i=1 |bi|(1 − δW )i) and κ2 =

O(
∑L+1

i=1 |bi|).

We remark that when dn increases quickly enough, the
inequality in Theorem 4.4 implies that

RT (β̂
n,L+1) ≤ R(β∗,L+1) +O

(
log(n)L+1 · ρ3/2n√

n

)
.

In particular, when ρn ≫ log(n)2L+2/n, and dn increases
fast enough, then RT (β̂

n,L+1) ≤ R(β∗,L+1) + o(ρ2n), i.e.
the MSE decreases faster than the sparsity of the graph.

As mentioned in the discussion preceeding Theorem 4.4, if
the search space S is large enough to contain some vector
β∗,L+1 such that W (x, y) =

∑L+1
i=1 β

∗,iW (i+1)(x, y) for
all x, y, then R(β∗,L+1) = 0, and the MSE converges to
0. Notably, Proposition 4.2 implies that this search space
exists for L ≥ mW − 1. In this sense, mW captures the
“complexity” of W , and each layer of LG-GNN extracts an
additional order of complexity.

When L = mW − 1, in order for the search space S to con-
tain the β∗,mW defined in Proposition 4.2, we require that
bi > β∗,mW

i , where bi is defined in Theorem 4.4. Consider-
ing the proof of Proposition 4.2, if mW <∞, then bmW

is
on the order of 1

|µ1µ2...µmW
| , and hence the constant κ2 in

Proposition 4.2 is on this order as well. This dependence on
the inverse of small eigenvalues is a statistical bottleneck; it
turns out, however, that if we are concerned only with edge
ranking, instead of graphon estimation, this dependence can
be greatly reduced. This is outlined in Proposition 4.5.

If Algorithm 2 is used for predicting all the edges that have
a probability of more than γ > 0 of existing, then the 0-1
loss will also go to zero. Indeed for almost every γ > 0 we
have

1

n2

∑
i,j≤n

I(p̂i,j ≥ γ)− I(ρnW (ωi, ωj) ≥ γ)
p−→ 0.

Furthermore, if L < mW − 1 is smaller than the number of
distinct eigenvalues of W , then we have

R(β∗,L+1) ≤

√√√√mW∑
s=1

[
mW∑

r=L+1

β∗,mW
r

(
µr+1
s − µL+1

s

)]2
,

implying that the the R(β∗,L+1) in Theorem 4.4 decreases
as L increases. This latter bound is proved in Lemma F.1.

4.3. Preserving Ranking in Link Prediction

Theorem 4.4 states that under general conditions, LG-GNN
yields a consistent estimator for the underlying edge prob-
ability Wn(ωi, ωj) = ρnWi,j . However, estimating edge

probabilities is strictly harder than discovering a set of high-
probability edges. In practical applications, one often cares
about ranking the underlying edges, i.e., whether an algo-
rithm can assign higher probabilities to positive test edges
than to negative ones. Metrics such as the AUC-ROC and
Hits@k capture this notion. The following proposition char-
acterizes the performance of LG-GNN in ranking edges in a
k-community symmetric SBM. See Appendix A.3 for more
details about SBMs.

Before stating the proposition, we define the follow-
ing notation for a k-community symmetric SBM. Let
Sin = {(i, j)|vertices i, j belong to the same community},
Sout = {(k, ℓ)|vertices k, ℓ are in different communities},
and define

Erank :=

{
min

(i,j)∈Sin

p̂i,j > max
(k,ℓ)∈Sout

p̂k,ℓ

}
to be the event that the predicted probabilities for all of the
in-community edges are greater than all of the predicted
probabilities for the across-community edges, i.e., LG-GNN
achieves perfect ranking of the graph edges. We will prove
that this event happens with high probability. See Proposi-
tion G.1 for the full proposition.

Proposition 4.5 (Informal). Consider a k-community sym-
metric stochastic block model with parameters p > q and
sparsity factor ρn. Let µ1 = p+(k−1)q

k > p−q
k = µ2 be

the eigenvalues of the associated graphon. Suppose that
the search space F is such that {β ∈ RL+1| ||β||L1 ≤
(µ1ρn)

−1} ⊆ F .

Produce probability estimators p̂i,j for the probability of
an edge between vertices i and j using Algorithm 1 and
Algorithm 2 with parameters L,F where L ≥ 1. Then,
there exists a constant A > 0 such that when

log(n)L+1

ρn
√
n

[√
ρn +

1√
dn

]
≤ Aµ3

2

holds, then with high probability, Erank occurs, i.e., LG-
GNN correctly predicts higher probability for all of the
in-community edges than for cross-community edges.

Proposition 4.5 gives conditions under which LG-GNN
achieves perfect ranking on a k-community symmetric SBM.
One subtle but important point is the implied convergence
rate. In Proposition 4.5, the size of the search space is re-
quired only to be on the order of (µ1ρn)

−1. In the notation
of Theorem 4.4, this means that the constant κ2 is upper
bounded by 1/µ1, which indicates a much faster rate of
converge than the rate that is required by Theorem 4.4 to
define consistent estimators. This confirms the intuition that
ranking is easier than graphon estimation, and in particu-
lar, should be less sensitive to small eigenvalues. Proposi-
tion 4.5 demonstrates the extent to which ranking is easier
than graphon estimation.
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5. Performance of the Classical GCN
Architecture

As mentioned in Section 4, in the context of random node
initializations, a naive choice of GNN architecture can cause
learning to fail. In the following proposition, we demon-
strate that for a large class of graphons, the Classical GCN ar-
chitecture with random initializations results in embeddings
that cannot be informative in out-of-sample graphon estima-
tion. To make this formal, we assume that at training, only
n−m vertices are observable. We denote by Gn|Vn−m

the
induced subgraph with vertex set Vn−m = {1, . . . , n−m}.
And we consider graphons that are such that

The function W : x→
∫ 1

0

W (x, y)dy is constant. (H4)

Note that many graphons satisfy this assumption, including
symmetric SBMs.

Proposition 5.1. Suppose that the graph Gn = ([n], En) is
generated according to a graphon Wn = ρnW . Moreover
assume that Assumptions (H1), (H2), (H4) hold.

Suppose that the initial embeddings (λ0i )
i.i.d∼ µ are so that

each coordinate is generated i.i.d. from a s2√
dn

sub-Gaussian

distribution. Assume that the subsequent embeddings (λℓi)
are computed iteratively according to Equation (1), where
σ(·) is taken to be 1−Lipschitz and where the weight ma-
trices (Mk,0,Mk,1) are trained on Gn|Vn−m

and satisfy

∥Mk,0∥op, ∥Mk,1∥op
a.s
≤ M .

Then, there exist random variables µℓ
n, ℓ ∈ [L], that are

independent of ωn−m+1, . . . , ωn such that for a certain κ >

0 with probability at least 1− 2
n −2ne−

12 log(n)
ρn −2ne−κdn ,

sup
ℓ≤L
∥λLn − µℓ

n∥ ≤
K√

ρn(n− 1)
, (4)

where K > 0 is an absolute constant.

We show that this leads to suboptimal risk for graphon
estimation. For simplicity we show this for dense graphons,
e.g when ρn = 1.

Proposition 5.2. Suppose that the conditions of Proposi-
tion 5.1 hold. Moreover assume that the graphon W (·, ·) is
not constant and that ρn = 1 for all n ∈ N. Then, there
exists some constant K > 0 such that for any Lipchitz
prediction rule f(·, ·), for all vertices i ∈ [n], we have

E
([
W (ωi, ωn)− f(λLi , λLn)

]2) ≥ K + on(1). (5)

Proposition 5.1 and Proposition 5.2 imply that in the out-of-
sample setting, the embeddings produced by Equation (1)
with random node feature initializations will lead to sub-
optimal estimators for the edge probability W (ωi, ωi).

A key feature of the proof of Proposition 5.1 is that∑
u∈N(v)

λk−1
u√

|N(u)∥N(v)|
concentrates to 0 very quickly with

random node initializations. This demonstrates the impor-
tance of the (subtle) construction of the first round of mes-
sage passing λ0u in Algorithm 1. We also note that Proposi-
tion 5.2 doesn’t necessarily imply that predicted probabili-
ties p̂ei will be ineffective at ranking test edges, though we
do see in the experiments that the performance is decreased
for the out-of-sample case.

6. Identifiability and Relevance to Common
Random Graph Models

We remark that a key feature of LG-GNN is that it uses the
embedding vector λki produced at each layer. Indeed p̂i,j de-
pends on all of the terms {⟨λ0i , λ0j ⟩, ⟨λ0i , λ1j ⟩, . . . , ⟨λ0i , λLj ⟩}.
This is in contrast to many classical ways of using GNNs
for link prediction that depend only on ⟨λLi , λLj ⟩. The fol-
lowing proposition shows that this construction is necessary
to obtain consistent estimators.

Proposition 6.1. For any L ≥ 0, there exists a 2-community
stochastic block model, such that for every continuous func-
tion f : R→ R we have

f(⟨λLi , λLj ⟩)
p

̸→W (ωi, ωj).

This notably implies that

lim inf
n,dn→∞

inf
f∈c0(R)

E
((
f(⟨λLi , λLj ⟩)−W (ωi, ωj)

)2)
> 0

To illustrate this, consider the following example for L = 0.

Example 6.2. Consider an 2 community symmetric SBM

with edge connection probability matrix
(
1/2 1/4
1/4 3/4

)
. The

matrix of second moments, that is, the matrix of probabil-
ities of paths of length two between members of the two

communities is
(
5/32 5/32
5/32 5/16

)
. Hence for any continu-

ous function f and every vertex i, j, k belonging respec-
tively to communities 1 for i, j and 2 for k then we have
that f(⟨ω0

i , ω
0
j ⟩)

p−→ f(5/32) and f(⟨ω0
i , ω

0
k⟩)

p−→ f(5/32)
have the same limit. Hence this implies that no consistent
estimator of W (·, ·) can be built by using only (⟨λ0i , λ0j ⟩).

While this result is for the specific case of Algorithm 1,
which in particular contains no non-linearities, we anticipate
that this general procedure of learning a function that maps a
set of dot products {⟨λk1

i , λ
k2
j ⟩}k1,k2

to a predicted probabil-
ity, instead of just ⟨λLi , λLj ⟩, can lead to better performance
for practioners on various types of GNN architectures.

7
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7. Experimental Results
We compare experimentally a GCN, LG-GNN, and PLSG-
GNN. We perform experiments on the Cora dataset (Mc-
Callum et al., 2000) in the in-sample setting. We also show
results for various random graph models. The results for
random graphs below are in the out-sample setting, more
results are in Appendix I. We report the AUC-ROC and
Hits@k metric, and also a custom metric called the Proba-
bility Ratio@k, which is more suited to the random graph
setting. We refer the reader to Appendix I for a more com-
plete discussion.

LG-GNN and PLSG-GNN perform similarly to the classical
GCN in settings with no node features and can outperform
it on more complex graphons. One major advantage of
LG-GNN/PLSG-GNN is that they do not require extensive
tuning of hyperparameters (e.g., through minimizing a loss
function) and hence run much faster and are easier to fit. For
example, training the 4-layer GCN resulted in convergence
issues, even on a wide set of learning rates.

7.1. Real Data: Cora Dataset

The following results are in the in-sample setting. We con-
sider when (a) the GCN has access to node features (b) the
GCN does not.

Table 1. GCN has no access to node features
Params Model Hits@50 Hits@100

layers=2
GCN 0.496 ± 0.025 0.633 ± 0.023
LG-GNN 0.565 ± 0.012 0.637 ± 0.006
PLSG-GNN 0.591 ± 0.014 0.646 ± 0.013

layers=4
GCN 0.539 ± 0.008 0.665 ± 0.007
LG-GNN 0.564 ± 0.005 0.620 ± 0.008
PLSG-GNN 0.578 ± 0.014 0.637 ± 0.013

Table 2. GCN has access to node features
Params Model Hits@50 Hits@100

layers=2
GCN 0.753 ± 0.019 0.898 ± 0.021
LG-GNN 0.555 ± 0.027 0.603 ± 0.034
PLSG-GNN 0.577 ± 0.033 0.626 ± 0.042

layers=4
GCN 0.609 ± 0.072 0.776 ± 0.069
LG-GNN 0.560 ± 0.013 0.601 ± 0.012
PLSG-GNN 0.574 ± 0.025 0.625 ± 0.024

7.2. Synthetic Dataset: Random Graph Models

7.2.1. 10-COMMUNITY SYMMETRIC SBM

The following are results for a 10-community stochas-
tic block model with parameter matrix P that has ran-
domly generated entries. The diagonal entries Pi,i

are generated as Unif(0.5, 1), and Pi,j is generated as
Unif(0,min(Pi,i, Pj,j)). The specific connection matrix
that was used is in Appendix I.

Table 3. ρn = 1

Params Model P-Ratio@100 AUC-ROC

layers=2
GCN 0.709 ± 0.125 0.716 ± 0.019
LG-GNN 0.883 ± 0.016 0.734 ± 0.005
PLSG-GNN 0.886 ± 0.016 0.735 ± 0.005

layers=4
GCN 0.645 ± 0.025 0.578 ± 0.109
LG-GNN 0.879 ± 0.011 0.786 ± 0.002
PLSG-GNN 0.883 ± 0.013 0.732 ± 0.001

Table 4. ρn = 1/
√
n

Params Model P-Ratio@100 AUC-ROC

layers=2
GCN 0.344 ± 0.021 0.493 ± 0.004
LG-GNN 0.580 ± 0.020 0.497 ± 0.009
PLSG-GNN 0.586 ± 0.035 0.521 ± 0.008

layers=4
GCN 0.285 ± 0.016 0.486 ± 0.006
LG-GNN 0.589 ± 0.016 0.532 ± 0.003
PLSG-GNN 0.578 ± 0.013 0.508 ± 0.011

7.2.2. GEOMETRIC GRAPH

Each vertex i has latent feature Xi generated uniformly at
random on Sd−1, d = 11. Two vertices i and j are connected
if ⟨Xi, Xj⟩ ≥ t = 0.2, corresponding to a connection
probability ≈ 0.26. Higher sparsity is achieved by adjusting
the threshold t.

Table 5. ρn = 1

Params Model P-Ratio@100 AUC-ROC

layers=2
GCN 1.000 ± 0.000 0.873 ± 0.020
LG-GNN 1.000 ± 0.000 0.915 ± 0.007
PLSG-GNN 0.997 ± 0.005 0.917 ± 0.010

layers=4
GCN 0.813 ± 0.021 0.591 ± 0.016
LG-GNN 1.000 ± 0.000 0.956 ± 0.001
PLSG-GNN 1.000 ± 0.000 0.958 ± 0.001

Table 6. ρn = 1/
√
n

Params Model P-Ratio@100 AUC-ROC

layers=2
GCN 0.333 ± 0.017 0.840 ± 0.008
LG-GNN 0.523 ± 0.037 0.818 ± 0.022
PLSG-GNN 0.423 ± 0.054 0.842 ± 0.017

layers=4
GCN 0.313 ± 0.021 0.848 ± 0.021
LG-GNN 0.570 ± 0.016 0.823 ± 0.010
PLSG-GNN 0.510 ± 0.014 0.843 ± 0.013
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A. Notation and Preliminaries
We let ∥ · ∥p be the vector Euclidean norm. The Lp norm over the probability space will be denoted ∥X∥Lp = (E[|X|p])1/p.

A.1. Graph Notation

We let A = (aij)
n
i,j=1 be the adjacency matrix of the graph. Let (ωi)

n
i=1 be the latent features of the vertices, generated

from Unif(0, 1). Let W be the graphon, and let ρn be the sparsifying factor. We denote Wn := ρnW (we will typically be
concerned only with Wn, since that is the graphon from which the graph is generated). Let N(i) be the set of neighbors of a
vertex i, and hence |N(i)| is the degree of i.

We define the kth moment of a graphon Wn to be the function from [0, 1]2 → [0, 1] given by

W (k)
n (x, y) :=

∫
[0,1]k−1

Wn(x, t1)Wn(t1, t2) . . .Wn(tk−1, y)dt1 . . . dtk−1. (6)

Heuristically, if one fixes two vertices vx, vy with latent features x, y, then this is the probability of a particular path of
length k from vx, vy , when averaging over the possible latent features of the vertices in the path. Correspondingly, we define
the empirical kth moment between two vertices i and j to be

Ŵ
(k)
n,i,j =

1

(n− 1)k−1

∑
r1,...,rk−1≤n

air1ar1r2 . . . ark−1j . (7)

A.2. GNN Notation

We let λki be the embedding for the ith vertex produced by the GNN after the kth layer. The linear GNN architecture is
given by Equation (58):

λki =Mk,0λ
k−1
i +Mk,1

1

n− 1

∑
ℓ≤n

aiℓλ
k−1
ℓ , (8)

where Mk,0 and Mk,1 denote the weight matrices of the GNN at the kth layer. We remark that LG-GNN corresponds to
Mk,0 =Mk,1 = Iddn

being the identity matrix. Let

Nk
s :=

∑
r1,...,rk∈{0,1}∑k

i=1 ri=s

Mk,r1Mk−1,r2 . . .M1,rk , (9)

which is a quantity that shows up naturally in the GNN iteration. The classical GCN architecture we consider is also given
in Equation (1).

A.3. Stochastic Block Model

We define the stochastic block model, as it is a running model in this paper.

A stochastic block model SBM(n,P) is parameterized by the number of vertices n in the graph and a connection matrix
P ∈ Rk×k. Each vertex belongs in a particular community, labeled {1, 2, . . . , k}. We assign each vertex to belong to
community j with probability pj . In this paper, we choose pj = 1/k for all j ∈ [k]. Let ci denote the community of the ith
vertex. The graph is generated as follows. For each pair of vertices i ̸= j, we connect them with an edge with probability
Pci,cj . We also denote the symmetric stochastic block model by SSBM(n,p, q). The SSBM is a stochastic block model
with only two parameters: the parameter matrix P is so that Pii = p, Pij = q if i ̸= j.

The following lemma details how to represent a SBM using a graphon.

Lemma A.1. Consider a stochastic block model SBM(n,P). Suppose that P ∈ Rk×k is a symmetric matrix and that P
has spectral decomposition P =

∑k
i=1 λiviv

T
i , where ∥vi∥2 = 1. Let W : [0, 1]2 → [0, 1] be the corresponding graphon.

Then SBM(n,P) can be represented by a graphon as follows. W (x, y) = Pij if x ∈ [(i−1)/k, i/k] and y ∈ [(j−1)/k, j/k].
The eigenvalues of W are given by µi := λi/k with corresponding eigenfunctions ϕi(x), where ϕi(x) =

√
k(vi)j if

x ∈ [(j − 1)/k, j/k].

12
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This further implies that the eigenfunctions ϕi(x) are bounded above pointwise by
√
k, in that |ϕi(x)| ≤

√
k for all i ∈ [k]

and x ∈ [0, 1], since ∥vi∥2 = 1, implying that each entry of vi has norm bounded above by 1.

This proof of this lemma is a simple verification of the properties. We note that the eigenfunctions are scaled by
√
k because

they integrate to 1 in L2([0, 1]).

A.4. PLSG-GNN Algorithm

We state the PLSG-GNN Algorithm, which is an analog of Algorithm 2 that uses Partial Least Squares Regression (PLS).
Let g : N2 → N be an enumeration of the pairs (i, j), i ̸= j. In the algorithm below, let PLS denote the Partial Least Squares
algorithm as introduced in (Abdi, 2010).

Algorithm 3 LG-GNN edge prediction algorithm
Input: Graph G = (V,E), set S, threshold β; L.
Output: Set of predicted edges
Using Algorithm 1, compute q(2,L+2)

i,j := (q̂
(2)
i,j , . . . , q

(L+2)
i,j ) for every vertex i, j. Define the matrix Q̂ and vector a⃗, as

Q̂g(i,j) :=
(
q
(2:L+2)
i,j

)
, i < j, and a⃗g(i,j) = ai,j , i < j.

Compute:
β̂n,L+1 = PLS(Q̂, ã).

Compute: p̂i,j :=
〈
β̂n,L+1, q̂

(2:L+2)
i,j

〉
for all i, j

Return: {(i, j)| p̂i,j ≥ γ} the set of predicted edges.

B. Properties of Holder-by-Parts Graphons
Here, we discuss properties of symmetric, piecewise-Holder graphons. This section is largely from (Davison & Austern,
2023), Appendix H. Refer to that text for a more complete exposition; we just present the details most relevant to our needs.

Let µ be the Lebesgue measure. We define a partition Q of [0, 1] to be a finite collection of pairwise disjoint, connected
sets whose union is [0, 1], such that , for all Q ∈ Q, µ(int(Q)) > 0 and µ(cl(Q)\int(Q)) = 0. This induces a partition
Q⊗2 = Q ⊗ Q of [0, 1]2. We say that a graphon W lies in the Holder class Holder([0, 1]2, β,M,Q⊗2) if W is (β,M)
Holder continuous in each Qi ⊗Qj ∈ Q⊗2. All graphons in question in this paper are assumed to belong to this class.

A graphon W can be viewed as an operator between Lp spaces. In this paper, we focus on the case of p = 2. In particular,
for a fixed Graphon w, one can define the Hilbert-Schmidt operator

TW [f ](x) :=

∫ 1

0

W (x, y)f(y)dy.

Since W is symmetric, T is self-adjoint. Furthermore, because W (·, ·) ≤ 1, TW is a compact operator, as in (Stein &
Shakarchi, 2009) page 190. Hence, the spectral theorem (for example, in (Fabian et al., 2013), Theorem 7.46) states that
there exists a sequence of eigenvalues µi → 0 and eigenvectors ϕi (that form an orthonormal basis of L2([0, 1]), such that

TW [f ] =

∞∑
n=1

µn⟨f, ϕn⟩ϕn, W (x, y) =

∞∑
n=1

µnϕn(x)ϕn(y), (10)

and
∑∞

n=1 µ
2
n <∞. We note also that |µi| ≤ 1. This is because if µi is an eigenvalue, then

∫ 1

0

W (x, y)ϕi(y)dy = µiϕi(x)⇒ µ2
iϕi(x)

2 =

(∫ 1

0

W (x, y)ϕi(y)dy
)2

≤ 1,

where the last inequality is true because W is bounded by 1 and ϕi(y)2 integrates to 1. Then, since ϕi(x)2 also integrates to
1, this shows the result.

13
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B.1. Linear Relationship Between Moments and W (Proof of Proposition 4.2)

Proof of Proposition 4.2. Suppose that mW <∞ is the number of distinct nonzero eigenvalues of W , and label them by
|µ1| ≥ |µ2| ≥ · · · ≥ |µmW

|. Recall that

W (x, y) =

mW∑
i=1

µiϕi(x)ϕi(y).

We first prove via induction that

W (k)(x, y) =

mW∑
i=1

µk
i ϕi(x)ϕi(y).

Assume that this is true for k ∈ {1, 2, . . . ,K}. Now we show that W (K+1)(x, y) =
∑mW

i=1 µ
K+1
i ϕi(x)ϕi(y). Because the

ϕi are orthonormal in L2([0, 1]), we can compute

W (K+1)(x, y) =

∫ 1

0

W (K)(x, t)W (t, y)dt

=

∫ 1

0

(
mW∑
i=1

µK
i ϕi(x)ϕi(t)

)
·

(
mW∑
i=1

µiϕi(y)ϕi(t)

)
dt

=

∫ 1

0

mW∑
i,j

µK
i µjϕi(x)ϕj(y)ϕi(t)ϕj(t)dt

=

mW∑
i=1

µK+1
i ϕi(x)ϕi(y),

where the last equality is due to the orthonormality of the ϕi in L2([0, 1]). This completes the induction. We now argue that
there is a linear relationship between W (x, y) and (W (2)(x, y), . . . ,W (mW+1)(x, y)), i.e., there exists some β∗,mW such
that

W (x, y) =

mW∑
i=1

β∗,mW

i W (i+1)(x, y)

for all x, y. In light of the above discussion, we can observe that the vector β∗,mW =
(
β∗,mW

1 , β∗,mW

2 . . . , β∗,mW
mW

)
is simply

the solution (if it exists) to the system of equations
µ2
1 µ3

1 . . . µmW+1
1

µ2
2 µ3

2 . . . µmW+1
2

...
...

. . .
...

µ2
mW

µ3
mW

. . . µmW+1
mW




β1
β2
...

βmW

 =


µ1

µ2

...
µmW


To observe that a solution indeed exists, it suffices to observe that the matrix on the LHS is of full rank, i.e., has nonzero
determinant. To see this, we note that the ith row is a multiple of vi := (1, µi, . . . , µ

mW−1
i ). We note that the matrix whose

ith row is vi is a Vandermonde matrix, which has nonzero determinant if all of the variables are distinct. Then, since
multiplying each row by a constant changes the determinant only by a multiplicative factor, this suffices for the proof.

C. Proof of Proposition 5.1 and Proposition 5.2
We let A denote the adjacency matrix. In the proof, for random variables X and Borel sets B, we might write quantities
of the form P(X ∈ B|A). This denotes a conditional probability, where we condition on the realization of the graph. A
notation we also use is X|A ∼ Dist, which denotes the conditional distribution of a random variable X , conditioned on the
realization of the graph. We first state the following Lemma, used in the proof of Proposition 5.1.

Lemma C.1. Suppose that Gn = ([n], En) is generated from the graphon Wn(·, ·) = ρnW (·, ·). Write W (ωi, ·) :=∫ 1

0
W (ωi, x)dx. Then we have that

P
(
sup
i≤n

1

n− 1

∣∣∣|N(i)| − ρnW (ωi, ·)
∣∣∣ ≥ ρnt) ≤ 2n

(
e−

(n−1)ρnt2

3 + e−2(n−1)t2
)

(11)
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Proof of Lemma C.1. We first show the above result for a fixed vertex i (without loss of generality, let i = n), and then
conclude the proof through a union bound. We first state

Lemma C.2 ((Goemans, 2015), Theorem 4). Let X =
∑n

i=1Xi, where Xi ∼ Bern(pi), and all the Xi are independent.
Let µ = E[X] =

∑n
i=1 dn. Then

P(|X − E[X]| ≥ δµ) ≤ 2 exp
(
−µδ2/3

)
for all δ > 0.

Now suppose that the latent feature ωn is fixed. For any vertex j ̸= n, we have

P(ajn = 1|ωn) =

∫ 1

0

Wn(ωn, x)dx (12)

= ρnW (ωn, ·). (13)

Recall that |N(n)| =
∑

j ̸=n ajn hence E(|N(n)|
∣∣ωn) = ρnW (ωn, ·). We show that |N(n)| concentrates around

ρnW (ωn, ·). In this goal, remark that |N(n)|
∣∣(ωi) is distributed as a sum of independent Bernoulli random variables

with probabilities ρnW (ωi, ωn). Therefore, according to Lemma C.2, for all t ∈ (0, 1) we have

P
( 1

n− 1

∣∣∣|N(n)| − E
(
|N(n)|

∣∣(ωi)
)∣∣∣ ≥ ρnt) ≤ 2e−

(n−1)ρnt2

3 . (14)

Moreover, we remark that conditionally on ωn, the random variables (W (ωn, ωj))j ̸=n are i.i.d. Therefore, according to
Hoeffding’s inequality, we remark that for all t > 0, we have

P
(

1

n− 1

∣∣∣E(|N(n)|
∣∣(ωi)

)
− E(|N(n)|

∣∣ωn)
∣∣∣ ≥ ρnt) ≤ 2 exp

(
−2(n− 1)t2

)
. (15)

Using the union bound this directly implies that for all t ∈ (0, 1) we have

P
(
sup
i≤n

1

n− 1

∣∣∣|N(i)| − ρnW (ωi, ·)
∣∣∣ ≥ ρnt) ≤ 2n

(
e−

(n−1)ρnt2

3 + e−2(n−1)t2
)

(16)

Proof of Proposition 5.1. The proof proceeds through induction. Let A > 0 be a constant such that
√

A log(n)
ρn(n−1) ≤ δW /2.

We denote the event

E :=
{
sup
i∈[n]

∣∣∣|N(i)| − (n− 1)ρnW (ωi, ·)
∣∣∣ ≥√ρn(n− 1)

√
A log(n)

}
.

We remark that according to Lemma C.1 we have P(Ec) ≤ 2n
(
e−

A log(n)
3 + e−

2A log(n)
ρn

)
. For the remainder of the proof we

will work under the event E. Note that when E holds this also implies that

inf
i∈[n]
|N(i)| ≥ 1

2
ρnδW (n− 1) (17)

For ease of notation we define ξ := 2
√
2(s∧1)M√

δW
and write

ϵ(n, k) :=
ξ√

ρn(n− 1)

{
1+
(
(2M)k−1−1

)(
1+

2ML(s ∧ 1)

4δW

√
1 +

√
A log(n)√
ρn(n− 1)

√
A log(n)

(1 +√ A log(n)
(n−1)ρn

W

)L−2)}
We will then show that there is a constant κ > 0 so that, conditional on E holding, with a probability of at least 1− 2ne−κdn

there exists embedding vectors (µk
i ) that are independent from ωn−m+1:n such that for every k ≤ L we have

sup
i≤n
∥λki − µk

i ∥2 ≤ ϵ(n, k).

15
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To do so we proceed by induction. Firstly, since σ(·) is Lipschitz, we observe that for all i ≤ n that we have∥∥∥λ1i − σ (M1,0λ
0
i

) ∥∥∥
2
≤
∥∥∥M1,1

∑
ℓ≤n

aiℓλ
k−1
ℓ√

|N(i)∥N(ℓ)|

∥∥∥
2
, (18)

which we will show is bounded by O
(√∑

ℓ∈N(i)
1

|N(i)∥N(ℓ)|

)
with high probability. Using the hypothesis that

∥M1,1∥op
a.s
≤ M , we note that

∥∥∥M1,1

∑
ℓ≤n

aiℓλ
k−1
ℓ√

|N(i)∥N(ℓ)|

∥∥∥
2
≤ ∥M1,1∥op

∥∥∥∑
ℓ≤n

aiℓλ
k−1
ℓ√

|N(i)∥N(ℓ)|

∥∥∥
2

(19)

≤M
∥∥∥∑

ℓ≤n

aiℓλ
k−1
ℓ√

|N(i)∥N(ℓ)|

∥∥∥
2
. (20)

To bound this last quantity, we note that conditioned on Gn, we have that
∑

ℓ≤n
aiℓλ

0
ℓ√

|N(ℓ)|
is a
√∑

ℓ∈N(i)
s2

dn|N(i)∥N(ℓ)| -sub-

Gaussian vector with i.i.d entries. We will therefore use the following lemma

Lemma C.3. Suppose that X ∈ Rdn is a η/
√
dn sub-Gaussian vector with i.i.d coordinates. There exists some universal

constant κ > 0 such that

P
(∣∣∥X∥2 − E(∥X∥2) ≥ t

) ∣∣ ≤ 2 exp

(
−κdnt

2

η2

)
(21)

Proof of Lemma C.3. This is a direct consequence of Theorem 3.1.1 from (Vershynin, 2018).

We remark that

E
(∥∥∥∑

ℓ≤n

aiℓλ
0
ℓ√

|N(i)||N(ℓ)|

∥∥∥
2

∣∣∣Gn

)
≤

√√√√ ∑
ℓ∈N(i)

s2

|N(i)||N(ℓ)|
.

Therefore we obtain that there exists a universal constant κ > 0 such that

P

∥∥∥∑
ℓ≤n

aiℓλ
0
ℓ√

|N(i)||N(ℓ)|

∥∥∥
2
−

√√√√ ∑
ℓ∈N(i)

s2

|N(i)|N(ℓ)|
≥ t

∣∣∣∣∣Gn

 ≤ 2 exp

−κt2dn
 ∑

ℓ∈N(i)

s2

|N(i)∥N(ℓ)|

−1
 , (22)

and from this, setting t =
√∑

ℓ∈N(i)
s2

|N(i)∥N(ℓ)| , we can deduce that with probability at least 1− 2 exp (−κdn) ,

∥λ1i − σ
(
M1,0λ

0
i

)
∥2 ≤M

∣∣∣∣∣∣∣∣∑
ℓ≤n

aiℓλ
0
ℓ√

|N(i)||N(ℓ)|

∥∥∥
2

(23)

≤ 2(s ∧ 1)M

√√√√ ∑
ℓ∈N(i)

1

|N(i)||N(ℓ)|
(24)

(a)

≤ 2
√
2(s ∧ 1)M√

(n− 1)δW ρn
≤ ξ√

(n− 1)ρn
. (25)

where to get (a) we used the fact that under E we have that inf l ̸=n |N(l)| ≥ ρnδW (n−1)
2 .

We denote
µ1
i := σ(Mk,0λ

0
i )
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and remark that the random variables (µ1
i ) are independent from (ωj)

n
j=n−m+1, since ((λ0i )i,M1,0,M1,1)) are assumed to

be independent from (ωj)j=n−m+1:n. We remark in addition that for all i we have ∥µ1
i ∥2 ≤M∥λ0i ∥2. We know that λ0i is a

s/
√
dn sub-Gaussian vector with i.i.d coordinates. Therefore by using Lemma C.3 again, we obtain that there exists k̃ > 0

such that with probability of at least 1− 2ne−2κ̃dn we have

sup
i≤n
∥µ1

i ∥2 ≤ 2M(s ∧ 1).

Denote the event

Ẽ1 :=
{
sup
i∈[n]

∥λ1i − µ1
i ∥2 ≤ ϵ(n, 1) & sup

i≤n
∥µ1

i ∥2 ≤ 2M(s ∧ 1)
}
.

Taking a union bound over all vertices, we know that Ẽ1 holds, conditionally on E holding, with a probability of at least
1 − 2nexp(−κdn) − 2nexp(−κ̃dn). We now suppose that both Ẽ1 and Ẽ hold. Suppose that for some 1 < k < L
the following event is true: for all r ≤ k, there exists some set of vectors (µr

i )i∈[n] independent of the latent features
(ωi)

n
i=n−m+1 such that

sup
i∈[n]

∥λri − µr
i ∥2 ≤ ϵ(n, r), sup

i≤n
∥µr

i ∥2 ≤ 2(s ∧ 1)Mr

1 +
√

A log(n)
(n−1)ρn

W

r−1

(26)

We will show that the same statement holds for k + 1. In this goal, we denote by Ẽk the event

Ẽk :=

 sup
i∈[n]

∥λri − µr
i ∥2 ≤ ϵ(n, r), & sup

i≤n
∥µr

i ∥2 ≤ 2(s ∧ 1)Mr

1 +
√

A log(n)
(n−1)ρn

W

r−1

∀r ≤ k

 .

For ease of notation, for each i, write vki = λki − µk
i . We write λki = µk

i + vki , where the norm of vki is bounded, under the
event Ẽk, by ϵ(n, k). Furthermore, we note that

λk+1
i = σ

Mk+1,0λ
k
i +Mk+1,1

∑
ℓ≤n

aiℓλ
k
ℓ√

|N(i)∥N(ℓ)|

 (27)

= σ

(
Mk+1,0µ

k
i +Mk+1,1

∑
ℓ≤n

aiℓµ
k
ℓ√

|N(i)∥N(ℓ)|
+Mk+1,0v

k
i (28)

+Mk+1,1

∑
ℓ≤n

aiℓv
k
ℓ√

|N(i)∥N(ℓ)|

)
(29)

Under the event Ẽk we have ∥∥∥Mk+1,0v
k
i +Mk+1,1

∑
ℓ≤n

aiℓv
k
ℓ√

|N(i)∥N(ℓ)|

∥∥∥
2
≤ 2Mϵ(n, k).

As σ(·) is Lipschitz, this implies that

sup
i≤n

∥∥∥λk+1
i − σ

(
Mk+1,0µ

k
i +Mk+1,1

∑
ℓ≤n

aiℓµ
k
ℓ√

|N(i)∥N(ℓ)|

)∥∥∥
2

(30)

≤ 2Mϵ(n, k). (31)
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Moreover we also remark that as E and Ẽk holds we have

sup
i≤n

∥∥∥λk+1
i − σ

(
Mk+1,0µ

k
i +Mk+1,1

∑
ℓ≤n

aiℓµ
k
ℓ

(n− 1)ρn
√
W (ωi, ·)W (ωℓ, ·)

)∥∥∥
2

(32)

≤M sup
i≤n
∥µk

i ∥2
∑
ℓ≤n

aiℓ

∣∣∣ 1√
|N(i)∥N(ℓ)|

− 1

(n− 1)ρn
√
W (ωi, ·)W (ωℓ, ·)

∣∣∣ (33)

≤
(1 +√ A log(n)

(n−1)ρn

W

)k−1
√
2(s ∧ 1)Mk+1

√
δW δW

√
1 +

√
A log(n)√
ρn(n− 1)

√
A log(n)√
ρn(n− 1)

(34)

≤
(1 +√ A log(n)

(n−1)ρn

W

)L−2
√
2(s ∧ 1)ML

√
δW δW

√
1 +

√
A log(n)√
ρn(n− 1)

√
A log(n)√
ρn(n− 1)

. (35)

Note however that we have assumed that W (x, ·) =W is a constant function. This therefore implies that σ
(
Mk+1,0µ

k
i +

Mk+1,1

∑
ℓ≤n

aiℓµ
k
ℓ

(n−1)ρnW

)
is independent from ωn−m+1,n. Defining

µk+1
i := σ

(
Mk+1,0µ

k
i +Mk+1,1

∑
ℓ≤n

aiℓµ
k
ℓ

(n− 1)ρnW

)
, (36)

we have that
sup
i∈[n]

∥λk+1
i − µk+1

i ∥2 ≤ ϵ(n, k + 1). (37)

Moreover we note that

∥µk+1
i ∥2 ≤ 2M sup

i≤n
∥µk

i ∥2
(
1 +

∑
ℓ≤n

aiℓµ
k
ℓ

(n− 1)ρnW

)
(38)

≤ 2M sup
i≤n
∥µk

i ∥2
(
1 +

|N(i)|
(n− 1)ρnW

)
(39)

(a)

≤ 2M sup
i≤n
∥µk

i ∥2
1 +

√
A log(n)/((n− 1)ρn)

2W
(40)

where to get (a) we used the fact that we assumed that Ẽ holds. Hence we obtain that

sup
i≤n
∥µk+1

i ∥2 ≤ 2M(s ∧ 1)
(2M + 2M

√
A log(n)/((n− 1)ρn)

2W

)k
.

Hence if Ẽ1 and Ẽ hold this implies that Ẽk+1 and Ẽ hold which completes the induction. We hence have that

P
(
sup
i≤n

sup
i∈[n]

∥λri − µr
i ∥2 ≤ ϵ(n, r), ∀r ≤ L

)
≥ 1− 2n

(
e−

A log(n)
3 + e−

2A log(n)
ρn + e−κdn + e−κ̃dn

)
Choosing A = 6 yields the desired result.

We then prove Proposition 5.2

Proof. Suppose that f : R2 → R is Lipchtiz with respect to the Euclidean distance in R2. Using Proposition 5.1, we know
that there exists κ > 0 and embeddings (µL

j ) that are independent from ωn−m+1:n such that with a probability of at least
1− 2

n −
2

n11 − 2ne−κdn we have,

sup
ℓ≤L
∥λLn − µℓ

n∥2 ≤
K√
n
, (41)
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where K > 0 is an absolute constant. As f is assumed to be a Lipchitz function we obtain that∣∣f(λLn , λLi )− f(µL
n , µ

L
i )
∣∣ ≤ 2K√

n
.

Now denote the event En := {f(λLi , λLn) ≥ 2} and define Ẽn := {
∣∣f(λLn , λLi )− f(µL

n , µ
L
i )
∣∣ ≤ 2K√

n

}
. We will obtain two

different bounds respectively when

• P (En) ≥ 1
3E
([
W (ωi, ωn)−W (ωi, ·)

]2)
• P (En) <

1
3E
([
W (ωi, ωn)−W (ωi, ·)

]2)
.

Firstly, if P (En) ≥ 1
3E
([
W (ωi, ωn)−W (ωi, ·)

]2)
we remark that

E
([
W (ωi, ωn)− f(λLi , λLn)

]2) ≥ E
([
W (ωi, ωn)− f(λLi , λLn)

]2I(En)
)

(42)

≥ P (En) >
1

3
E
([
W (ωi, ωn)−W (ωi, ·)

]2)
. (43)

Now assume instead P (En) <
1
3E
([
W (ωi, ωn)−W (ωi, ·)

]2)
. This implies that

E
([
W (ωi, ωn)− f(λLi , λLn)

]2)− E
([
W (ωi, ωn)− f(µL

i , µ
L
n)
]2I(Ec

n ∩ Ẽc
n)
)

(44)

= E
([
W (ωi, ωn)− f(λLi , λLn)

]2I(En)
)
+ E

([
W (ωi, ωn)− f(λLi , λLn)

]2I(Ec
n ∩ Ẽn)

)
(45)

+ E
([
W (ωi, ωn)− f(λLi , λLn)

]2I(Ec
n ∩ Ẽc

n)
)
− E

([
W (ωi, ωn)− f(µL

i , µ
L
n)
]2I(Ec

n ∩ Ẽc
n)
)

(46)

≥ −
∣∣∣E([W (ωi, ωn)− f(λLi , λLn)

][
f(µL

i , µ
L
n)− f(λLi , λLn)

]
I(Ec

n ∩ Ẽc
n)
)∣∣∣ (47)

−
∣∣∣E([W (ωi, ωn)− f(µL

i , µ
L
n)
][
f(µL

i , µ
L
n)− f(λLi , λLn)

]
(Ec

n ∩ Ẽc
n)
)∣∣∣ (48)

(a)

≥ −2K√
n
(2 + 2 +

2K√
n
)P (EC

n ∩ Ẽc
n) (49)

where to get (a) we used the fact that under Ec
n ∩ Ẽc

n we have

|W (ωi, ωn)− f(µL
i , µ

L
n)| ≤ 2 +

2K√
n

and
|W (ωi, ωn)− f(λLi , λLn)| ≤ 2.

Hence we obtain that

E
([
W (ωi, ωn)− f(λLi , λLn)

]2) ≥ E
([
W (ωi, ωn)− f(µL

i , µ
L
n)
]2I(Ec

n ∩ Ẽc
n)
)
+ on(1).

However as (µL
j ) are independent from ωn we have that f(µL

i , µ
L
n) is independent from ωn. Hence if we write W (x, ·) =∫ 1

0
W (x, y)dy we obtain that

E
([
W (ωi, ωn)− f(µL

i , µ
L
n)
]2I(Ec

n ∩ Ẽc
n)
)

(50)

= E
([
W (ωi, ωn)−W (ωi, ·)

]2I(Ec
n ∩ Ẽc

n)
)
+ E

([
f(µL

i , µ
L
n)−W (ωi, ·)

]2I(Ec
n ∩ Ẽc

n)
)

(51)

≥ E
([
W (ωi, ωn)−W (ωi, ·)

]2I(Ec
n ∩ Ẽc

n)
)

(52)

≥ −P (En)− P (Ẽn) + E
([
W (ωi, ωn)−W (ωi, ·)

]2)
. (53)

19



Statistical Guarantees for Link Prediction using Graph Neural Networks

Now we have assumed that P (E)→ 0 and we know that P (Ẽ)→ 0. Hence we obtain that

E
([
W (ωi, ωn)− f(λLi , λLn)

]2) ≥ 2

3
E
([
W (ωi, ωn)−W (ωi, ·)

]2)
+ on(1).

Now we have assumed that W (·, ·) is not the constant graphon but H3 assumes that x → W (x, ·) is a constant function.
Hence by choosing

K :=
1

3
E
([
W (ωi, ωn)−W (ωi, ·)

]2)
> 0

we obtain that
E
([
W (ωi, ωn)− f(λLi , λLn)

]2) ≥ K + on(1).

D. Proof of Proposition 4.1

We proceed in two main steps. The first step is to establish a high-probability bound for
∣∣Ŵ (k)

n,i,j −W
(k)
n,i,j

∣∣. This bound is

then used to establish a bound on |q̂(k)i,j −W
(k)
n,i,j |. The main goal is to prove Proposition D.8, which is a restatement of

Proposition 4.1.

We will do these steps separately in the below subsections.

D.1. Proof of Proposition 4.1, Part 1

The goal of this subsection is to prove the following lemma.

Lemma D.1. With probability at least 1− 3/n, we have that for all 2 ≤ k ≤ L+ 2,

max
i̸=j

∣∣Ŵ (k)
n,i,j −W

(k)
n,i,j

∣∣ ≤ 3ak
ρ
k−1/2
n√
n− 1

log(n)k,

where ak = C
√
2(8(k + 2))kkk+1

√
k!/
√
B, where B,C are some absolute positive constants.

We proceed in three steps. We first establish a high probability bound for
∣∣Ŵ (k)

n,i,j − E[Ŵ (k)
n,i,j |(ωℓ)]

∣∣. Then, we establish a

high probability bound for
∣∣E[Ŵ (k)

n,i,j |(ωℓ)]− E[Ŵ (k)
n,i,j |ωi, ωj ]

∣∣. We then bound
∣∣E[Ŵ (k)

n,i,j |ωi, ωj ]−W (k)
n,i,j

∣∣.
D.1.1. BOUNDING

∣∣Ŵ (k)
n,i,j − E[Ŵ (k)

n,i,j |(ωℓ)]
∣∣

We use the following

Lemma D.2 ((Kim & Vu)). Let (ξi) be a sequence of independent Bernouilli random variables. Let N be an integer and
P : RN → R be a polynomial of degree k. For a subset A ⊂ [|N |]k we write by ∂AP the partial derivative of P with
respect to the indexes A. Define µ1 = max|A|≥1 E[∂AP ((ξi)i≤N )] and let µ0 = max|A|≥0 E[∂AP ((ξi)i≤N )]. Then,

P
(
|P ((ξi)i≤N )− E[P ((ξi)i≤N )|(ωl)]| > ak

√
µ0µ1λ

k
)
≤ G · exp(−λ+ (k− 1) log(N)), (54)

where ak = 8k
√
k!, and G is an absolute constant.

We will apply Lemma D.2 to obtain the desired result. We first fix i ̸= j. In this goal we set N := n(n− 1)/2 and define P
to be the following polynomial:

P ((ak,l)k ̸=l≤n) := Ŵ
(k)
n,i,j =

1

(n− 1)k−1

∑
r1,...,rk

ai,ri . . . ark−1,j .

We remark that conditionally on the features (ωl), the random variables (ak,l) are independent Bernouili random variables.
We note that our goal is to give a high probability bound on the difference between P ((ak,l)k ̸=l≤n) and its expectation
E[P ((ak,l)k ̸=l≤n)|(ωl)]. We first bound E[∂AP ((ak,l)k ̸=l≤n)]. We note that this is maximized when A contains only
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one element. This is because when differentiating by ai,j , all of the terms that do not include this edge vanish, hence
differentiating by more ai,j will cause more edges to vanish.

Furthermore, E[(∂/∂as,t)P ((ak,l)k ̸=l≤n)] is maximized by choosing (s, t) to be an edge that appears most often, such
that as many terms as possible are preserved. Because the endpoints are fixed as i, j, it suffices to bound the desired
quantity for (s, t) = (i, 1) (without loss of generality, assume i ̸= 1; note the choice of 1 was arbitrary). For each string
ai,r1ar1,r2 . . . ark−1,j , if it contains ai,1, then the number of terms in the string will be lowered by 1 upon differentiation
(otherwise it equals 0 identically), hence after differentiating, the maximum number of terms in the string is k − 1.

We now upper-bound the number of strings ai,r1ar1,r2 . . . ark−1,j that contain ai1 and also have exactly t distinct edges.

1. Case 1: r1 = 1. Then, there are k − 2 free indices remaining. However, since there are t distinct edges, that means
k − t edges are repeated (appear at least more than once). Note that each repeated edge removes one free index. Hence,
the remaining number of degrees of freedom is t− 2 ∨ 0.

2. Case 2: r1 ̸= 1. Then, since the edge (i, 1) needs to appear in the sequence, there are at most k locations for it to
appear, and then 2 ways to orient it (it can either be (i, 1) or (1, i)). So, there are 2k ways to choose the edge (i, 1), and
then there remain t− 3 ∨ 0 ways degrees of freedom remaining.

Combining the two cases, there are at most (n− 1)t−2∨0 + 2k(n− 1)t−3∨0 ≤ 2(n− 1)t−2∨0 ways to choose the set of
indices {r1, r2, . . . , rk−1}. Then, there are at most (k − 1)k−1 ways to choose the values of r1, r2, . . . , rk−1 among this
set, which is upper bounded by kk. Hence, the number of configurations with exactly t distinct edges is upper bounded by
2kk(n− 1)t−2∨0. Hence, we can bound

E[(∂/∂as,t)P ((ak,l)k ̸=l≤n)|(ωl)] ≤
2kk

(n− 1)k−1

k∑
t=1

(n− 1)t−2∨0ρt−1
n

≤ 2kk
k∑

t=1

ρt−1
n

(n− 1)k−t+1

≤ 2kk+1 ρ
k−1
n

n− 1
,

where the last inequality follows if ρn > 1
n−1 . We now bound E[P ((ak,l)k ̸=l≤n)|(ωl)]. We first upper-bound the number of

paths from i to j of length k with exactly ℓ distinct edges. For convenience, denote r0 = i and rk = j. Firstly, we note that
if there are exactly ℓ distinct edges, then |{r0, r1, r2, . . . , rk−1, rk}| ≤ ℓ+ 1. Since r0 = i, rk = j, there are at most

(
n−1
ℓ−1

)
ways to choose a superset in which {r1, r2, . . . , rk−1} lies. Then, there are at most (ℓ− 1)k−1 ≤ kk ways to choose the
indices r1, r2, . . . , rk−1 among this set. Hence, there are most (n− 1)ℓ−1kk paths of length k with exactly ℓ distinct edges
from i to j. Hence,

E[P ((ak,l)k ̸=l≤n)|(ωl)] ≤
1

(n− 1)k−1

k∑
ℓ=1

(n− 1)ℓ−1kk · ρℓn

≤ kk
k∑

ℓ=1

ρℓn
(n− 1)k−ℓ

≤ kk+1ρkn.

Now we apply Lemma D.2 to obtain

P

(
|P ((ξi)i≤N )− E[P ((ξi)i≤N )|(ωl)]| > bk

ρ
k−1/2
n√
n− 1

λk

)
= G · exp(−λ+ (k− 1) log(N))

≤ G · exp(−λ+ (k− 1) log(n))

for some absolute constant G, where bk =
√
28kkk+1

√
k!. Choosing λ = log(G) + (k + 2) log(n), and union bounding

21



Statistical Guarantees for Link Prediction using Graph Neural Networks

over all i ̸= j and 2 ≤ k ≤ L+ 2, we have that with probability at least 1− 1/n, for all 2 ≤ k ≤ L+ 2,

max
i ̸=j

∣∣Ŵ (k)
n,i,j − E[Ŵ (k)

n,i,j |(ωl)]
∣∣ ≤ ak ρk−1/2

n√
n− 1

log(n)k.

where ak = C
√
2(8(k + 2))kkk+1

√
k!/
√
B, where B is from the constant in the Big O factor, and C is some constant.

D.1.2. STEP 2: BOUNDING
∣∣E[Ŵ (k)

n,i,j |(ωℓ)]− E[Ŵ (k)
n,i,j |ωi, ωj ]

∣∣
We now bound |E[Ŵ (k)

n,i,j |(ωℓ)]− E[Ŵ (k)
n,i,j |ωi, ωj ]| using McDiarmid’s Inequality. For ease of notation, we assume WLOG

that i = 1 and j = 2, and denote r0 = i and rk = j. To use McDiarmid’s inequality; we first bound the maximum deviation
in altering one of the coordinates. WLOG we alter the nth coordinate ωn and bound∣∣∣E[Ŵ (k)

n,1,2|(ωℓ)ℓ ̸=n, ωn]− E[Ŵ (k)
n,1,2|(ωℓ)ℓ ̸=n, ω

′
n]
∣∣∣ .

Recalling the definition

Ŵ
(k)
n,1,2 =

1

(n− 1)k−1

∑
r1,r2,...,rk−1

a1,r1ar1,r2 . . . ark−1,2,

denote B(rs) = E[a1,r1ar1,r2 . . . ark−1,2|(ωℓ)ℓ̸=n, ωn]− E[a1,r1ar1,r2 . . . ark−1,2|(ωℓ)ℓ ̸=n, ω
′
n]. We first bound each B(rs)

individually over different choices of the indices (rs). We note that if none of the rs = n, then B(rs) = 0. Hence, we need
consider only the terms in the summation for which at least one of the rs equals n.

If (rs) corresponds to a path with exactly k − t distinct edges, then |B(rs)| ≤ ρk−t
n . We upper bound the number of paths of

length k that have exactly k − t distinct edges. Note that t ≤ k − 2, since our we are considering terms such that there exist
rs that equal 1, 2, n, so there cannot be less than two distinct edges. We note that if there are exactly k − t distinct edges,
then the number of distinct numbers among the set {r0, r1, . . . , rk} is at most k + 1− t. Because r0 = 1 and rk = 2, and n
must be one of the rs must equal n, there are at most

(
n−1

k−2−t

)
ways to choose the remaining vertices. Then, the number of

ways to choose the values of rs among these k + 1− t options is bounded by (k + 1− t)k−1. Hence, the total number of
options is upper bounded by

(
n−1

k−t−2

)
(k+1− t)k−1 ≤ (n− 1)k−t−2(k+1)k−1. Lastly, we note that t ∈ {0, 1, . . . , k− 1}.

Hence, the constant in the exponential bound of McDiarmid’s Inequality is given by

1

(n− 1)k−1

k−2∑
t=0

ρ2(k−t)
n (n− 1)k−t−2(k + 1)k−1 =

ρ2kn (k + 1)k−1

n− 1

k−2∑
t=0

(
1

nρ2n

)t

=
ρ2kn (k + 1)k−1

n− 1

1− (1/nρ2n)
k−1

1− (1/nρ2n)

≤ ρ2kn (k + 1)k−1

n− 1

1− (1/nρ2n)
k−1

1− (1/nρ2n)

≤ 4
ρ2kn k

k

n
(55)

if nρ2n ≥ 1
10 , since then 1−(1/nρ2

n)
k−1

1−(1/nρ2
n)
≤ 10

9 , and (k + 1)k−1 ≤ 2kk for all k ≥ 2. Then, the McDiarmid Inequality states
that

P
(
|E[Ŵ (k)

n,i,j |(ωℓ)]− E[Ŵ (k)
n,i,j |ωi, ωj ]| ≥ t

)
≤ 2 exp

(
−2t2 n

ρ2kn k
k

)
(56)

Hence, choosing t =
√

kkρ2k
n√

n

√
2 log(n) and union bounding over i ̸= j, 2 ≤ k ≤ L+ 2, we have that with probability at

least 1− 2/n, for all 2 ≤ k ≤ L+ 2,

max
i ̸=j
|E[Ŵ (k)

n,i,j |(ωℓ)]− E[Ŵ (k)
n,i,j |ωi, ωj ]| ≥

√
kkρ2kn
n

√
2 log(n) (57)
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D.1.3. STEP 3: BOUNDING
∣∣E[Ŵ (k)

n,i,j |ωi, ωj ]−W (k)
n,i,j

∣∣
Recall

Ŵ
(k)
n,i,j =

1

(n− 1)k−1

∑
r1,...,rk−1

air1ar1r2 . . . ark−1j

We see that

E[Ŵ (k)
n,i,j |ωi, ωj ] =

1

(n− 1)k

k∑
ℓ=1

W
(ℓ)
n,i,j · (# paths with ℓ distinct edges)

Firstly, we claim that the number of paths of length k starting from vertex i to j that have no repeated edges is lower bounded
by (n− 2)(n− 3) . . . (n− k). This is simply because if no vertex is passed through twice along the path, then there cannot
exist repeated edges. There are n− 2 choices for r1, then n− 3 choices for r2, etc., which shows this assertion. This implies
that the number of paths with k distinct edges is (n− 1)k−1 + Pk, where |Pk| = O(k2nk−2). Note that this also implies
that the number of paths of length k is of order O(k2nk−2). Hence, we can write

E[Ŵ (k)
n,i,j |ωi, ωj ] =W

(k)
n,i,j +

1

(n− 1)k−1
Pk ·W (k)

n,i,j +
1

(n− 1)k−1

k−1∑
ℓ=2

W
(ℓ)
n,i,j(# paths with ℓ distinct edges)

⇒ |E[Ŵ (k)
n,i,j |ωi, ωj ]−W (k)

n,i,j | ≤
1

(n− 1)k−1
|Pk| ·W (k)

n,i,j +

∣∣∣∣∣ 1

(n− 1)k−1

k−1∑
ℓ=2

W
(ℓ)
n,i,j(# paths with ℓ distinct edges)

∣∣∣∣∣
To proceed with the triangle inequality, we first upper-bound the number of paths from i to j of length k with exactly ℓ
distinct edges. For convenience, denote r0 = i and rk = j. Firstly, we note that if there are exactly ℓ distinct edges, then
|{r0, r1, r2, . . . , rk−1, rk}| ≤ ℓ + 1. Since r0 = i, rk = j, there are at most

(
n−1
ℓ−1

)
ways to choose a superset in which

{r1, r2, . . . , rk−1} lies. Then, there are at most (ℓ− 1)k−1 ≤ kk ways to choose the indices r1, r2, . . . , rk−1 among this
set. Hence, there are most (n− 1)ℓ−1kk paths of length k with exactly ℓ distinct edges from i to j. Hence,

|E[Ŵ (k)
n,i,j |ωi, ωj ]−W (k)

n,i,j | ≤ O
(
k2

n

)
ρkn +

k−1∑
ℓ=2

1

(n− 1)k−ℓ
ρℓnk

k

= kkO

(
ρk−1
n

n
+
ρk−2
n

n2
+ · · ·+ ρn

nk−1

)
= O

(
kk+1 ρ

k−1
n

n

)
,

where this last line is true because ρn > 1
n .

D.1.4. STEP 4: COMBINING THE BOUNDS

Combining the three steps and using the triangle inequality, we have that with probability at least 1− 3/n, we have that for
all 2 ≤ k ≤ L+ 2,

max
i ̸=j

∣∣Ŵ (k)
n,i,j −W

(k)
n,i,j

∣∣ ≤√kkρ2kn
n

√
2 log(n) + ak

ρ
k−1/2
n√
n− 1

log(n)k +O

(
kk+1 ρ

k−1
n

n

)
≤ 3ak

ρ
k−1/2
n√
n− 1

log(n)k,

for sufficiently large n, as we note that the second term is the dominating one when ρn > 1/n. This suffices for the proof of
Lemma D.1.
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D.2. Proof of Proposition 4.1, Part 2

The main goal of this subsection is to prove Proposition D.8. Before proving that, we first present general properties of the
GNN embedding vectors our proposed algorithm produces (where we consider a more general version of our proposed
GNN in which the weight matrices are not the identity). Uninterested readers can skip directly to Proposition D.8 to see the
main result, and those who interested in more details can continue to read the exposition below.

In this appendix, we consider a version of our proposed GNN architecture with general weight matrices, given by

λki =Mk,0λ
k−1
i +Mk,1

1

n− 1

∑
ℓ≤n

aiℓλ
k−1
ℓ , (58)

where Mk,0,Mk,1 are matrices that can be freely chosen. Note also that aii = 0, and hence the normalization by n− 1. As

proposed in Algorithm 1, we initialize the embeddings by first sampling (Zi)
iid∼ 1√

dn
N (0, Idn

), and then computing the
first layer through

λ0i =
1√
n− 1

n∑
ℓ=1

aiℓZℓ. (59)

We compute a total of L GNN iterations and for all vertices i, produce the sequence λ0i , λ
1
i , . . . , λ

L
i .

In this appendix, we prove Proposition D.8 in a series of steps:

1. We first give a general formula for λki , and then demonstrate that E[⟨λk1
i , λ

k2
j ⟩] is a linear combination of the empirical

moments of the graphon Ŵ (k)
n,i,j . This is done in Lemma D.4.

2. We then show in Lemma D.5 that q̂(k)i,j can be written in the simpler form

q̂
(k)
i,j =

〈
1√
n− 1

∑
ℓ≤n

aj,ℓZℓ,
1√
n− 1

∑
ℓ≤n

Ŵ
(k−1)
n,i,ℓ Zℓ

〉
.

3. We then use the above observation to establish a concentration result for q̂(k)i,j in Proposition D.8.

D.3. Formula for the Embedding Vectors

Recall the definition from Equation (9)

Nk
s :=

∑
r1,...,rk∈{0,1}∑k

i=1 ri=s

Mk,r1Mk−1,r2 . . .M1,rk . (60)

For example, N3
0 =M3,0M2,0M1,0 and N3

1 =M3,0M2,1M1,0 +M3,0M2,0M1,1 +M3,1M2,0M1,0.Then,
Proposition D.3. Consider the GNN Architecture defined in Algorithm 1, and recall the definition of the empirical moment
between vertices i and j,

Ŵ
(k)
n,i,j =

1

(n− 1)k−1

∑
r1,...,rk−1≤n

air1ar1r2 . . . ark−1j

as in Equation (7). Then for k ≥ 0, we have

λki =
1√
n− 1

∑
ℓ≤n

(
k∑

q=0

Nk
q · Ŵ

q+1
n,i,ℓ

)
Zℓ. (61)

Proof of Proposition D.3. We proceed through induction. The induction base case of k = 0 is satisfied by definition of λ0i .
Now, suppose for induction that, for k = K,

λKi =
1√
n− 1

∑
ℓ≤n

(
K∑
q=0

NK
q · Ŵ

q+1
n,i,ℓ

)
Zℓ.
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We use the definition of our GNN iteration to compute λK+1
i . In particular, we observe that λK+1

i will be a linear combination
of the Zℓ, where the coefficient of Zℓ is given by

MK+1,0
1√
n− 1

(
K∑
q=0

NK
q · Ŵ

q+1
n,i,ℓ

)
+MK+1,1

1

n− 1

∑
r≤n

air

(
1√
n− 1

K∑
q=0

NK
q · Ŵ

q+1
n,r,ℓ

)

=
1√
n− 1

MK+1,0N
K
0 · Ŵ 1

n,i,ℓ

+
1√
n− 1

 K∑
q=1

MK+1,0N
K
q · Ŵ

q+1
n,i,ℓ +

1

n− 1
MK+1,1N

K
q−1 · Ŵ

q
n,r,ℓ

∑
r≤n

air


+

1√
n− 1

 1

n− 1
MK+1,1N

K
q · ŴK+1

n,r,ℓ

∑
r≤n

air

 . (62)

To arrive at the desired result, we first make a few observations. Firstly, we note that

1

n− 1
Ŵ q

n,r,ℓ

∑
r≤n

air =
1

(n− 1)q

 ∑
r1,...,rq−1≤n

arr1ar1r2 . . . arq−1ℓ

∑
r≤n

air

=
1

(n− 1)q

∑
r1,r2,...,rq

air1ar1r2 . . . arqℓ

= Ŵ q+1
n,i,ℓ, (63)

which allows us to simplify the analogous quantities in the last two terms. To simplify the second term, we use the definition
of NK

q and note that
MK+1,0N

K
q +MK+1,1N

K
q−1 = NK+1

q .

To see this, we note that

MK+1,0N
K
q +MK+1,1N

K
q−1 =MK+1,0

∑
r1,...,rK∈{0,1}∑K

i=1 ri=q

MK,r1MK−1,r2 . . .M1,rK

+MK+1,1

∑
r1,...,rK∈{0,1}∑K

i=1 ri=q−1

MK,r1MK−1,r2 . . .M1,rK

=
∑

r1,...,rK,rK+1∈{0,1}∑K
i=1 ri=q

MK+1,r1MK,r2MK−1,r2 . . .M1,rK+1

= NK+1
q ,

which allows us to simplify the second term. Finally, we see that the coefficient of Zℓ is given by

1√
n− 1

NK+1
0 · Ŵ 1

n,i,ℓ +
1√
n− 1

K∑
q=1

(
NK+1

q · Ŵ q+1
n,i,ℓ

)
+

1√
n− 1

NK+1
q · ŴK+2

n,i,l

=
1√
n− 1

∑
ℓ≤n

K+1∑
q=0

NK
q · Ŵ

q+1
n,i,ℓ.

Hence, we obtain that

λK+1
i =

 1√
n− 1

∑
ℓ≤n

K+1∑
q=0

NK
q · Ŵ

q+1
n,i,ℓ

Zℓ, (64)

as desired.
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D.4. Expectation of Dot Products and their Concentration

The following lemma shows that the expectation of the dot products of the embedding vectors, conditional on the graph, is a
linear combination of the empirical moments Ŵ k

i,j .

Lemma D.4. Suppose that λki are produced through Algorithm 1. Then, conditional on the latent features (ωi)
n
i=1 and the

adjacency matrix A, we have

E
[
⟨λk1

i , λ
k2
j ⟩|A, (ωi)

n
i=1

]
=

1

dn

k1∑
q1=0

k2∑
q2=0

Tr
((
Nk1

q1

)T
Nk2

q2

)
Ŵ q1+q2+2

n,i,j . (65)

Proof of Lemma D.4. Firstly, we note that if W ∼ N (0, Ik), then E[WTAW ] = Tr(A). Then, we can compute

E
[
⟨λk1

i , λ
k2
j ⟩|A, (ωi)

n
i=1

]
=

1

dn

∑
ℓ≤n

Tr

( 1√
n− 1

k1∑
q=0

Nk1
q · Ŵ

q+1
n,i,ℓ(A)

)T (
1√
n− 1

k2∑
q=0

Nk2
q · Ŵ

q+1
n,j,ℓ(A)

) (66)

=
1

dn

k1∑
q1=0

k2∑
q2=0

Tr

(Nk1
q1

)T
Nk2

q2

1

n− 1

∑
ℓ≤n

Ŵ q1+1
n,i,ℓ (A)Ŵ

q2+1
n,j,ℓ (A)

 (67)

=
1

dn

k1∑
q1=0

k2∑
q2=0

Tr
((
Nk1

q1

)T
Nk2

q2

)
Ŵ q1+q2+2

n,i,j . (68)

Now that these properties of the embedding vectors have been shown, we now return to the setting of our algorithm, where
the weight matrices Mk,i are chosen to be the identity. We now prove that the algorithm to produce estimators q̂(k)ij for W (k)

ij

in Algorithm 1 is asymptotically consistent, and we establish the convergence rate. For the reader’s convenience, we rewrite
the algorithm below. The following lemma explains the intuition as to why we expect q̂(k)i,j to be an estimator for Ŵ (k)

i,j .

Algorithm 4 GNN Architecture and Estimators for the Graphon Moments
Input: a Graph G = (V,E); n := |V |.
Output: estimators q̂ij for the edge probability Wij .

Computing Estimators for W (k)
ij :

for i ̸= j do
q̂
(2)
i,j := ⟨λ0i , λ0j ⟩.

end
for k ∈ {3, 4, . . . , L+ 2} do

q̂
(k)
i,j := ⟨λk−2

i , λ0j ⟩ −
∑k−3

r=0

(
k−2
r

)
q̂r+2

end
Return:

{
(q̂

(2)
ij , q̂

(3)
ij , . . . , q̂

(L+2)
ij )i ̸=j

}
Lemma D.5. As in Algorithm 1, define (with the weight matrices Mk,i = Idn

)

q̂
(2)
i,j := ⟨λ0i , λ0j ⟩, q̂

(k)
i,j := ⟨λk−2

i , λ0j ⟩ −
k−3∑
r=0

(
k − 2

r

)
q̂r+2.

Then

q̂
(k)
i,j =

〈
1√
n− 1

∑
ℓ≤n

aj,ℓZℓ,
1√
n− 1

∑
ℓ≤n

Ŵ
(k−1)
n,i,ℓ Zℓ

〉
.

Under the heuristic that ZT
ℓ1
Zℓ2 ≈ I(ℓ1 = ℓ2), then we see that q̂(k)i,j ≈ Ŵ

(k)
n,i,ℓ.
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Proof of Lemma D.5. We first show that we can write

q̂
(k)
i,j =

〈
λ0j ,

k−2∑
r=0

(
k − 2

k − 2− r

)
(−1)k−2−r · λri

〉
. (69)

Note equivalently this can be written as

q̂
(k)
i,j =

〈
λ0j ,

k−2∑
r=0

(
k − 2

r

)
(−1)r · λk−2−r

i

〉
.

We show this using induction. Assume this is true for all k ≤ K for some K. We can compute q̂(K+1)
i,j using the formula in

Algorithm 1. Using the definition of q̂(K+1)
i,j we can compute that the coefficient of λai in q̂(K+1)

i,j is given by

−
K−2∑
r=a

(
K − 1

r

)(
r

r − a

)
(−1)r−a = −

K−2∑
r=a

(
K − 1

K − r − 1

)(
r

a

)
(−1)r−a.

To compute this, we first argue that
K−1∑
r=a

(
K − 1

K − r − 1

)(
r

a

)
(−1)r = 0.

We use generating functions. We note that
(
K−1
r

)
(−1)r is the coefficient of xK−r−1 in the expansion of (1 − x)K−1.

Then, we note that
(
r
a

)
is the coefficient of xr−a in the expansion of 1

(1−x)a+1 . Hence, this summation simply represents the
coefficient of xK−a−1 in the expansion of (1− x)K−a−2. However, since (1− x)K−a−2 is a degree K − a− 2 polynomial,
the coefficient is simply 0. Hence, this implies that

−
K−2∑
r=a

(
K − 1

K − r − 1

)(
r

a

)
(−1)r−a = (−1)K−1−a

(
K − 1

a

)
.

Thus, we have shown that the coefficient of λai in q̂(K+1)
i,j is of the desired form, which suffices to prove Equation (69). Now,

continuing with the proof, we recall that Proposition D.3 states that

λki =
1√
n− 1

∑
ℓ≤n

(
k∑

q=0

(
k

q

)
· Ŵ (q+1)

n,i,ℓ

)
Zℓ,

so

q̂
(k)
i,j =

〈
λ0j ,

k−2∑
r=0

(
k − 2

r

)
(−1)r · 1√

n− 1

∑
ℓ≤n

(
k−2−r∑
q=0

(
k − 2− r

q

)
· Ŵ (q+1)

n,i,ℓ Zℓ

)〉
.

We analyze the second term in the dot product more closely. The coefficient of Zℓ in the second term is equal to (ignoring
the factor of 1/

√
n− 1 for now)

k−2∑
r=0

k−2−r∑
q=0

(−1)r
(
k − 2

r

)(
k − 2− r

q

)
Ŵ

(q+1)
n,i,ℓ

=

k−2∑
q=0

k−2−r∑
r=0

(−1)r
(
k − 2

r

)(
k − 2− r

q

)
Ŵ

(q+1)
n,i,ℓ

=

k−2∑
q=0

Ŵ
(q+1)
n,i,ℓ

k−2−q∑
r=0

(−1)r
(
k − 2

r

)(
k − 2− r

q

)
.
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Hence it suffices to argue that
∑k−2−q

r=0 (−1)r
(
k−2
r

)(
k−2−r

q

)
= 1 if q = k−2, and 0 otherwise. We argue this in Lemma D.6.

Assuming that this is true, then we see that

q̂
(k)
i,j =

〈
λ0j ,

k−2∑
r=0

(
k − 2

r

)
(−1)r · 1√

n− 1

∑
ℓ≤n

(
k−2−r∑
q=0

(
k − 2− r

q

)
· Ŵ (q+1)

n,i,ℓ Zℓ

)〉

=

〈
λ0j ,

1√
n− 1

∑
ℓ≤n

Ŵ
(q+1)
n,i,ℓ Zℓ

〉

=

〈
1√
n− 1

∑
ℓ≤n

ajℓZℓ,
1√
n− 1

∑
ℓ≤n

Ŵ
(q+1)
n,i,ℓ Zℓ

〉
,

as desired. To conclude the proof, we present and prove Lemma D.6.

Lemma D.6. Let k ≥ 0 be an integer. Then

k−q∑
r=0

(−1)r
(
k

r

)(
k − r
q

)
=

{
0 q < k

1 q = k
.

Proof. Consider the formal series

(1 + x)k =

k∑
s=0

(
k

s

)
xs,

1

(x+ 1)q+1
=

∞∑
s=q

(−1)s−q

(
s

q

)
xs−q.

Multiplying these two series, we notice that the desired quantity
∑k−q

r=0(−1)r
(
k
r

)(
k−r
q

)
is exactly the coefficient of xk−q

in the product of the two series, which is (1 + x)k−q−1. However, xk−q is a monomial of degree k − q, and hence has
coefficient 0 in (1 + x)k−q−1, which has degree (1 + x)k−q−1 when q < k. The notable exception is when k = q, and then
the coefficient (of the constant term) in (1 + x)−1 is exactly equal to 1. This suffices for the proof.

We now establish the main concentration result, Proposition D.8. Before doing so, we first state the following lemma.
Lemma D.7. Let ξ = (ξ1, . . . , ξn), and let ξ1, . . . , ξn be independent, zero-mean normal random variables with for all
i = 1, 2, . . . n, E[ξ2i ] = σ2

i . Let D = Diag(σ1, . . . , σn). Let B be any n× n real matrix. Then for all ϵ > 0,

P
(∣∣ξTBξ − E[ξTBξ]

∣∣ > ϵ
)
≤ exp

(
−min

(
ϵ

4∥DBD∥F
,

ϵ2

16∥DBD∥2F

))
(70)

Proof of Lemma D.7. We adapt Proposition 1 from (Bellec, 2019), which states the following.

Let ξ = (ξ1, . . . , ξn), and let ξ1, . . . , ξn be independent, zero-mean normal random variables with for all i = 1, 2, . . . n,
E[ξ2i ] = σ2

i . Let D = Diag(σ1, . . . , σn). Let B be any n× n real matrix. Then for any x > 0,

P
(∣∣ξTBξ − E[ξTBξ]

∣∣ > 2∥DBD∥F
√
x+ 2∥DBD∥2x

)
≤ exp(−x).

To adapt this proposition into the form in Lemma D.7, we firstly note that ∥X∥2 ≤ ∥X∥F , so

2∥DBD∥F
√
x+ 2∥DBD∥2x ≤ 2∥DBD∥F (

√
x+ x) (71)

≤ 4∥DBD∥F ·max(
√
x, x) (72)

Then

P
(∣∣ξTBξ − E[ξTBξ]

∣∣ > 4∥DBD∥F ·max(
√
x, x)

)
(73)

≤ P
(∣∣ξTBξ − E[ξTBξ]

∣∣ > 2∥DBD∥F (
√
x+ x)

)
(74)

≤ P
(∣∣ξTBξ − E[ξTBξ]

∣∣ > 2∥DBD∥F
√
x+ 2∥DBD∥2x

)
(75)

≤ exp(−x), (76)
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which implies that

P
(∣∣ξTBξ − E[ξTBξ]

∣∣ > ϵ
)
≤ exp

(
−min

(
ϵ

4∥DBD∥F
,

ϵ2

16∥DBD∥2F

))
, (77)

as desired.

Proposition D.8 (Proposition 4.1). Suppose that L ≤ n and that (H2) holds. Then, conditional on A and (ωi)
n
i=1, with

probability at least 1− 5/n− n · exp (−δW ρn(n− 1)/3) we have that for all 2 ≤ k ≤ L+ 2,

sup
i̸=j∈[n]

∣∣∣q̂(k)i,j −W
(k)
n,i,j

∣∣∣ ≤ ρk−1
n√
n− 1

log(n)k
[
3ak
√
ρn +

96ak−1√
dn

]
, (78)

where ak = C(8(k + 2))kkk+1
√
k!, where C is some absolute positive constant.

We first introduce the following lemma:

Lemma D.9. Suppose that the graphon W satisfies condition H2, and suppose the sparsity factor is ρn. Then,

P

max
i∈[n]

1

n− 1

∑
j≤n

j ̸=i

aij ≥ ρn(1 + δ)
∣∣∣(ωi)

n
i=1

 ≤ n · exp
− δ2

2 + δ

∑
j≤n

j ̸=i

ρnW (ωi, ωj)

 .

Choosing δ = 1 yields that with probability at least 1− n · exp
(
− δW

3 ρn(n− 1)
)
, conditional on (ωi)

n
i=1,

max
i∈[n]

1

n− 1

∑
j≤n

j ̸=i

aij < 2ρn.

Summing over all i, this implies that

Proof of Lemma D.9. We use the following lemma about sums of independent Bernoulli random variables:

Lemma D.10 ((Goemans, 2015), Theorem 4). Let X =
∑n

i=1Xi, where Xi ∼ Bern(pi), and all the Xi are independent.
Let µ = E[X] =

∑n
i=1 pi. Then

P(X ≥ (1 + δ)µ) ≤ exp

(
− δ2

2 + δ
µ

)
for all δ > 0.

Fix i. We note that the random variables (aij)j ̸=i are independent conditioned on the (ωr)
n
r=1. Using these variables directly

in this lemma above yields

P

(∑
j≤n

j ̸=i

aij ≥ (1 + δ)
∑
j≤n

j ̸=i

ρnW (ωi, ωj)

)
≤ exp

(
− δ2

2 + δ

∑
j≤n

j ̸=i

ρnW (ωi, ωj)
)
.

Then, noting that δW ≤W (·, ·) ≤ 1, and substiting δ = 1, we obtain

P

(
1

n− 1

∑
j≤n

j ̸=i

aij < 2ρn

)
≥ 1− exp

(
− δW

3
ρn(n− 1)

)
.

A union bound over all i ∈ [n] concludes the proof.

29



Statistical Guarantees for Link Prediction using Graph Neural Networks

Proof of Proposition D.8. In the remainder of this proof, we condition on the event in Lemma D.1, which is that

max
i ̸=j

∣∣Ŵ (k)
n,i,j −W

(k)
n,i,j

∣∣ ≤ 3ak
ρ
k−1/2
n√
n− 1

log(n)k.

This contributes the probability of 3/n. For simplicity of notation, denote Bn,k := 3ak
ρk−1/2
n√
n−1

log(n)k. We also condition
on the event in Lemma D.9, which contributes the probability of n · exp(−δWρn(n− 1)/3).

Fix some i ̸= j. We prove the claim for this particular choice of i, j, and then union bound over all pairs at the end of the
proof. Recall that Lemma D.5 states that

q̂
(k)
i,j =

〈
1√
n− 1

∑
ℓ≤n

aj,ℓZℓ,
1√
n− 1

∑
ℓ≤n

Ŵ
(k−1)
n,i,ℓ Zℓ

〉
.

We first note that because Zℓ ∼ 1√
dn
N (0, Idn

), we have that

E(Zℓ)

[
q̂
(k)
i,j

∣∣A, (ωi)
]
=

1

n− 1

∑
ℓ≤n

aj,ℓŴ
(k−1)
n,i,ℓ = Ŵ

(k)
n,i,ℓ,

where this is the expectation is over the randomness in the Gaussian vectors (Zℓ). Hence, to show the desired result, it
suffices just to show the concentration of a quadratic form of Gaussian vectors. Concretely, writing Z = (Z1, Z2, . . . , Zn),
we can write ⟨λki , λ0j ⟩ = ZTCZ, where

C =


C11 C12 . . . C1n

C21 C22 . . . C2n

...
...

. . .
...

Cn1 Cn2 . . . Cnn


and

Cm1m2 =

(
1√
n− 1

aj,m2

)
·
(

1√
n− 1

Ŵ
(k−1)
n,i,m1

)
Idn

=
aj,m2

Ŵ
(k−1)
n,i,m1

n− 1
· Idn

.

To show the concentration of the quadratic form ZTCZ, we employ Lemma D.7 to do this. In order to apply Lemma D.7,
we first bound the Frobenius norm of C. Noting that

∥C∥F =

√ ∑
m1,m2≤n

∥Cm1m2
∥2F ,

we can write

∥C∥F =

√
dn

(n− 1)2

∑
m1,m2≤n

aj,m2

(
Ŵ

(k−1)
n,i,m1

)2

=

√√√√√√√
dn

(n− 1)2

( ∑
m2≤n

aj,m2︸ ︷︷ ︸
≤2ρn

)
·

 ∑
m1≤n

(
Ŵ

(k−1)
n,i,m1

)2

≤
√
3ρndnB2

n,k−1

= Bn,k−1

√
3ρndn.
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For ease of notation, we will write ∥C∥F ≤ FBn,k−1
√
ρn
√
dn for some constant F ≤

√
3.We now use Lemma D.7. Noting

that each element of Z is an independent N(0, 1/dn) random variable, then Lemma D.7 states that when ϵ
√
dn

4FBn,k−1
√
ρn

> 1,

we have

P
(∣∣∣q̂(k)i,j − Ŵ

(k)
n,i,j

∣∣∣ > ϵ
∣∣∣A, (ωi)

n
i=1

)
≤ 2 exp

(
− ϵ

√
dn

4FBn,k−1
√
ρn

)
.

Choose ϵ = 4FBn,k−1
√
ρn√

dn
t. Then

P
(∣∣∣q̂(k)i,j − Ŵ

(k)
n,i,j

∣∣∣ > 4FBn,k−1
√
ρn√

dn
t
∣∣∣A, (ωi)

n
i=1

)
≤ 2 exp (−t) .

Now, union bounding over all k ∈ {2, 3, . . . , L + 2} and i < j, i, j ∈ [n], we have that with probability at least
1− 2exp(−t + 3 log(n)), for all 2 ≤ k ≤ L+ 2, (assuming L ≤ n− 1), conditional on A, (ωi)

n
i=1,∣∣∣q̂(k)i,j − Ŵ

(k)
n,i,j

∣∣∣ ≤ 4FBn,k−1
√
ρn√

dn
t.

Taking t = 4 log(n), we have that with probability 1− 2/n, for all 2 ≤ k ≤ L+ 2, conditional on A, (ωi)
n
i=1, and using

that F ≤
√
3, ∣∣∣q̂(k)i,j − Ŵ

(k)
n,i,j

∣∣∣ ≤ 32Bn,k−1
√
ρn√

dn
log(n).

Now, recall that

max
i ̸=j

∣∣Ŵ (k)
n,i,j −W

(k)
n,i,j

∣∣ ≤ 3ak
ρ
k−1/2
n√
n− 1

log(n)k = Bn,k.

Hence, the triangle inequality implies that for all 2 ≤ k ≤ L+2,with probability at least 1−5/n−n·exp(−δWρn(n−1)/3),∣∣∣q̂(k)i,j −W
(k)
n,i,j

∣∣∣ ≤ Bn,k +
32Bn,k−1

√
ρn√

dn
log(n)

≤ 3ak
ρ
k−1/2
n√
n− 1

log(n)k +
32√
dn
· 3ak−1

ρk−1
n√
n− 1

log(n)k

=
ρk−1
n√
n− 1

log(n)k
[
3ak
√
ρn +

96ak−1√
dn

]
,

as desired.

E. Proof of Theorem 4.4
In this section, we prove Theorem 4.4. We first review some notation used below.

Define the vectors

W (2,k)
n (x, y) :=

(
W (2)

n (x, y), . . . ,W (k)
n (x, y)

)
q̂
(2,k)
ij =

(
q̂
(2)
ij , q̂

(3)
ij , . . . , q̂

(k)
ij

)
,

and recall that Wn,i,j denotes Wn(ωi, ωj). Define

r(n, dn,m) := max
2≤k≤m+1

ρ−(k−1)
n

(
ρk−1
n√
n− 1

log(n)k
[
3ak
√
ρn +

96ak−1√
dn

])
= max

2≤k≤m+1

(
log(n)k√
n− 1

[
3ak
√
ρn +

96ak−1√
dn

])
We note that when ρn ≫ log(n)2(m+1)/n, r(n, dn,m) = o(ρn). The term in the parentheses in the first equation is simply
the bound on

∣∣q̂(k)i,j −W
(k)
n,i,j

∣∣ presented in Proposition 4.1. r(n, dn,m) will be a natural quantity that appears later in this
section.
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We also define

R(β) = E
[(〈

β,W (2,1+len(β))
n (x, y)

〉
−Wn(x, y)

)2]
where the expectation is over x, y ∼ Unif(0, 1), and define the empirical risk Rn(β) as

Rn(β) =
2

n(n− 1)

n∑
i<j

(〈
β, q̂

(2,1+len(β))
ij

〉
− aij

)2
.

We also define the out-of-sample test error as

RT (β) = E
[(〈

β, q̂
(2,1+len(β))
n+1,n+2

〉
−Wn(ωn+1, ωn+2)

)2]
. (79)

The following proposition is the main component of Theorem 4.4.

Proposition E.1 (Theorem 4.4). Let F =
∏k

i=1[−ai, ai] be a subset of Rk, where ai = bi/ρ
i
n for some bi > 0. Let k be a

positive integer and define
β̂n,k := argmin

β∈F
Rn(β), β∗,k := argmin

β∈F
R(β).

Define D =
∑k

i=1 |bi|. Then with probability at least 1− 5/n− n · exp(−δWρn(n− 1)/3)− δ,

RT (β̂
n,k) ≤ R(β∗,k) + 6Dρn · r(n, dn, k)(T + 2) + 3D2r(n, dn, k)

2 + Õ

(
ρ2n(T + 1)2√

n

)

where T = (1− δW )
∑k

r=1 br(1− δW )r and the Õ constant depends on
√
log(1/δ).

Proof of Theorem 4.4. We write

RT (β̂
n,k) ≤ R(β∗,k) + |R(β̂n,k)−R(β∗,k)|+ |RT (β̂

n,k)−R(β̂n,k)|. (80)

We first bound

R(β̂n,k)−R(β∗,k) =
[
R(β̂n,k)−Rn(β̂

n,k)
]
+
[
Rn(β̂

n,k)−Rn(β̂
∗,k)
]
+
[
Rn(β̂

∗,k)−R(β̂∗,k)
]
.

We note that the LHS is ≥ 0 by definition of β∗,k. We note that the second term on the RHS is ≤ 0 by definition of β̂n,k.
Hence, it follows that

|R(β̂n,k)−R(β∗,k)| ≤
∣∣∣[R(β̂n,k)−Rn(β̂

n,k)
]
+
[
Rn(β̂

∗,k)−R(β̂∗,k)
]∣∣∣ .

Lemma E.2 states that

Rn(β)−R(β) =
2

n(n− 1)

∑
i<j

(aij − (Wn,ij)
2) + S2(β) + S3(β) +Kn(β)− E[Kn(β)],

so hence

|R(β̂n,k)−R(β∗,k)| ≤ |
[
R(β̂n,k)−Rn(β̂

n,k)
]
+
[
Rn(β̂

∗,k)−R(β̂∗,k)
]
|

≤ |S2(β̂
n,k) + S3(β̂

n,k) +Kn(β̂
n,k)− E[Kn(β̂

n,k)]|

+ |S2(β̂
∗,k) + S3(β̂

∗,k) +Kn(β̂
∗,k)− E[Kn(β̂

∗,k)]|

≤ 4Dρn · r(n, dn, k) · (T + 2) + 2D2r(n, dn, k)
2 + Õ

(
ρ2n(T + 1)2√

n

)
, (81)
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where the last inequality follows from Lemma E.2. We now bound |RT (β̂
n,k)−R(β̂n,k)|. For any β ∈ S, write

RT (β) = E
[(〈

β, q̂
(2,k+1)
n+1,n+2

〉
−Wn(ωn+1, ωn+2)

)2]
= E

[(〈
β,W

(2,k+1)
n,n+1,n+2

〉
+
〈
β, q̂

(2,k+1)
n+1,n+2 −W

(2,k+1)
n,n+1,n+2

〉
−Wn,n+1,n+2

)2]
= E

[(〈
β,W

(2,k+1)
n,n+1,n+2

〉
−Wn,n+1,n+2

)2]
︸ ︷︷ ︸

R(β)

+ E
[
2 ·
(〈
β,W

(2,k+1)
n,n+1,n+2

〉
−Wn,n+1,n+2

)
·
〈
β, q̂

(2,k+1)
n+1,n+2 −W

(2,k+1)
n,n+1,n+2

〉]
+ E

[〈
β, q̂

(2,k+1)
n+1,n+2 −W

(2,k+1)
n,n+1,n+2

〉2]
,

which implies that (using similar arguments as in the proof of Lemma F.4),

|RT (β)−R(β)| ≤ 2Dρn(T + 1)r(n, dn, k) +D2r(n, dn, k)
2 (82)

Substituting Equation (81) and Equation (82) into Equation (80) yields the desired result.

The following lemma is used directly in the above proof of Theorem 4.4. We state it and prove it below.

Lemma E.2. Let F =
∏k

i=1[−ai, ai] be a subset of Rk, where ai = bi/ρ
i
n for some bi > 0. Let β ∈ S be arbitrary. Define

D =
∑k

i=1 |bi|. Then

Rn(β)−R(β)−
2

n(n− 1)

∑
i<j

(aij − (Wn,ij)
2) = S2(β) + S3(β) +Kn(β)− E[Kn(β)].

Furthermore, employing Lemma F.2, Lemma F.4, and Lemma F.5 implies that with probability at least 1 − 5/n − n ·
exp(−δWρn(n− 1)/3)− δ,

∣∣∣∣∣∣Rn(β)−R(β)−
2

n(n− 1)

∑
i<j

(aij − (Wn,ij)
2)

∣∣∣∣∣∣ ≤ 2Dρn ·r(n, dn, k) ·(T +2)+D2 ·r(n, dn, k)2+Õ
(
ρ2n(T + 1)2√

n

)
,

where T = (1− δW )
∑k

r=1 br(1− δW )r and the Õ constant depends on
√
log(1/δ). We note that this is the probability at

which this lemma holds, since Lemma F.2, Lemma F.4, and Lemma F.5 all condition on the same events, so the probabilities
in their respective statements do not add.

33



Statistical Guarantees for Link Prediction using Graph Neural Networks

Proof of Lemma E.2. Let β ∈ S be arbitrary. Consider

Rn(β) =
2

n(n− 1)

∑
i<j

(〈
β, q̂

(2,k+1)
ij

〉
− aij

)2
=

2

n(n− 1)

∑
i<j

(〈
β,W

(2,k+1)
n,ij + q̂

(2,k+1)
ij −W (2,k+1)

n,ij

〉
− aij

)2
=

2

n(n− 1)

∑
i<j

(〈
β,W

(2,k+1)
n,ij

〉
− aij

)2
︸ ︷︷ ︸

S1(β)

+
2

n(n− 1)

∑
i<j

[
2⟨β, q̂(2,k+1)

ij −W (2,k+1)
n,ij ⟩(⟨β,W (2,k+1)

n,ij ⟩ − aij)
]

︸ ︷︷ ︸
S2(β)

+
2

n(n− 1)

∑
i<j

⟨β, q̂(2,k+1)
ij −W (2,k+1)

n,ij ⟩2︸ ︷︷ ︸
S3(β)

We analyze these three terms successively. We first rewrite S1(β) as

2

n(n− 1)

∑
i<j

(〈
β,W

(2,k+1)
n,ij

〉2
− 2aij

〈
β,W

(2,k+1)
n,ij

〉
+ aij + (Wn,ij)

2 − (Wn,ij)
2

)

=
2

n(n− 1)

∑
i<j

[(〈
β,W

(2,k+1)
n,ij

〉2
− 2aij

〈
β,W

(2,k+1)
n,ij

〉
+ (Wn,ij)

2

)
+
(
aij − (Wn,ij)

2
)]

We observe that
2

n(n− 1)

∑
i<j

(〈
β,W

(2,k+1)
n,ij

〉2
− 2aij

〈
β,W

(2,k+1)
n,ij

〉
+ (Wn,ij)

2

)
︸ ︷︷ ︸

Kn(β)

has expectation

R(β) = E
[(〈

β,W
(2,k+1)
n,ij

〉
−Wn,ij

)2]
. (83)

Hence, we can write

Rn(β) = Kn(β) + S2(β) + S3(β) +
2

n(n− 1)

∑
i<j

(aij − (Wn,ij)
2), (84)

and, we obtain that

Rn(β)−R(β)−
2

n(n− 1)

∑
i<j

(aij − (Wn,ij)
2) = S2(β) + S3(β) +Kn(β)− E[Kn(β)] (85)

The result then follows by invoking Lemma F.2, Lemma F.4, and Lemma F.5.

F. Proofs of Lemma F.1, Lemma F.2, Lemma F.4, and Lemma F.5
This section presents Lemma F.1, which is used in Theorem 4.4, and its proof. We also present Lemma F.2, Lemma F.4, and
Lemma F.5, which are used in the proof of Theorem 4.4.
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F.1. Proof of Lemma F.1

Lemma F.1. Suppose that W has finite distinct rank mW , and let β∗,mW ∈ RmW so that

W (x, y) =

mW∑
r=1

β∗,mW
r W (r+1)(x, y).

Let v = (v1, v2, . . . , vk) denote the vector that minimizes∥∥∥∥∥W (x, y)−
k∑

r=1

vrW
(r+1)(x, y)

∥∥∥∥∥
L2

.

Then ∥∥∥∥∥W (x, y)−
k∑

r=1

vrW
(r+1)(x, y)

∥∥∥∥∥
L2

≤

√√√√mW∑
s=1

[
mW∑
r=k

β∗,mW
r

(
µr+1
s − µk+1

s

)]2

Proof of Lemma F.1. By definition of v being a minimizer of
∥∥∥W (x, y)−

∑k
r=1 vrW

(r+1)(x, y)
∥∥∥
L2

, this quantity would

be bounded by the error incurred if we replace v with the vector w =
(
β∗,mW

1 , β∗,mW

2 , . . . , β∗,mW

k−1 ,
∑mW

s=k β
∗,mW
s

)
. This

would yield

∥W (x, y)−
k∑

r=1

wrW
(r+1)(x, y)∥2

= ∥
mW∑
r=1

β∗,mW
r W (r+1)(x, y)−

k∑
r=1

wrW
(r+1)(x, y)∥2

= ∥
mW∑
r=1

β∗,mW
r W (r+1)(x, y)−

k−1∑
r=1

β∗,mW
r W (r+1)(x, y)−

(
mW∑
s=k

β∗,mW
s

)
W (k+1)(x, y)∥2

= ∥
mW∑
r=k

β∗,mW
r W (r+1)(x, y)−

(
mW∑
s=k

β∗,mW
s

)
W (k+1)(x, y)∥2

= ∥
mW∑
r=k

β∗,mW
r

(
W (r+1)(x, y)−W (k+1)(x, y)

)
∥2

= ∥
mW∑
r=k

β∗,mW
r

(
mW∑
s=1

(
µr+1
s − µk+1

s

)
ϕs(x)ϕs(y)

)
∥2

= ∥
mW∑
s=1

(
mW∑
r=k

β∗,mW
r

(
µr+1
s − µk+1

s

))
ϕs(x)ϕs(y)∥2

=

√√√√mW∑
s=1

[
mW∑
r=k

β∗,mW
r

(
µr+1
s − µk+1

s

)]2

F.2. Proof of Lemma F.2

Lemma F.2. Let F =
∏k

i=1[−ai, ai] be a subset of Rk, where ai = bi/ρ
i
n for some bi > 0. Define D =

∑k
i=1 |bi|, and

define

Kn(β) :=
2

n(n− 1)

∑
i<j

(〈
β,W

(2,k+1)
n,ij

〉2
− 2aij

〈
β,W

(2,k+1)
n,ij

〉
+ (Wn,ij)

2

)
.
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Let

T = (1− δW )

k∑
r=1

br(1− δW )r.

Then with probability at least 1− 5/n− exp(−δW ρn(n− 1)/3)− δ, we have

sup
β∈F
|Kn(β)− E[Kn(β)]| = Õ

(
ρ2n(T + 1)2√

n

)
, (86)

where Õ hides logarithmic factors.

Proof of Lemma F.2. In the proof of this lemma, we are inherently conditioning on all of the events that the proof of
Proposition D.8 conditions on. Specifically, we are conditioning on the event that

sup
i ̸=j∈[n]

∣∣∣q̂(k)i,j −W
(k)
n,i,j

∣∣∣ ≤ ρk−1
n√
n− 1

log(n)k
[
3ak
√
ρn +

96ak−1√
dn

]
,

and that
max
i∈[n]

1

n− 1

∑
j≤n

j ̸=i

aij < 2ρn ⇒
2

n(n− 1)

∑
i<j

aij < 2ρn.

Firstly, we note that |⟨β,W (2,k+1)(x, y)⟩| ≤ ρnT. See the proof of Lemma F.4 for a more detailed calculation.

We use an ϵ-net argument to obtain the desired uniform concentration result over the entire space. We first bound the
cardinality of an ϵ-net needed to cover S, where the covering sets are ϵ-balls in the L1 norm in RmW . We then establish a
high-probability bound for the quantity |Kn(β0)− E[Kn(β0)]| using a concentration inequality for U-statistics, for a fixed
β0. Then, the continuity of Kn(β) will yield a bound for |Kn(β)− E[Kn(β)]| for all β in the same ϵ-ball as β0. We then
take a union bound over all balls in the ϵ-net to arrive at the conclusion.

We note that a hypercube with side length 2ϵ/k centered at some x is contained in the L1 ϵ-ball centered at x, so bounding
the cardinality of a covering with hypercubes of side length 2ϵ/k would also bound the cardinality of a covering with L1

ϵ-balls. To determine this cardinality, we can simply consider the construction of tiling S (which is a hyper-rectangle) with
hypercubes simply by packing the cubes side-to-side. Hence, we obtain an ϵ-net of size bounded by

k∏
i=1

2
bi
ρin

k

2ϵ
=

1

ρ
k(k+1)/2
n

(
k

ϵ

)k k∏
i=1

bi. (87)

Now, we bound |Kn(β)− E[Kn(β)]|. In this goal we define

K1
n(β) :=

2

n(n− 1)

∑
i<j

(〈
β,W

(2,k+1)
n,ij

〉2
− 2Wn,i,j

〈
β,W

(2,k+1)
n,ij

〉
+ (Wn,ij)

2

)
and

K2
n(β) : = −

4

n(n− 1)

∑
i<j

(
aij

〈
β,W

(2,k+1)
n,ij

〉
−Wn,i,j

〈
β,W

(2,k+1)
n,ij

〉)

We remark that Kn(β) = K1
n(β) +K2

n(β). Using the triangle inequality, we notice that it is enough to show concentration
of K1

n(β) and K2
n(β) around their respective expectations.

We first remark that E(K2
n(β)) = 0 and show concentration K2

n(β) around its expectation. In this goal, notice that
conditional on (ωi), the random variables

(
ai,j
)

are i.i.d Bernoulli random variables. Moreover we notice that conditionally

on the features (ωi) we have that P ((ai,j)) = − 4
n(n−1)

∑
i<j ai,j

〈
β,W

(2,k+1)
n,ij

〉
is a polynomial of degree one of the

Bernoulli random variables (ai,j). Hence, we use Lemma D.2. We note that E[P ((ai,j))] ≤ 2Tρ2n, and the first derivative

with respect to a1,2 is ∂
∂a1,2

P ((ai,j)) = − 4
n(n−1)

〈
β,W

(2,k+1)
n,1,2

〉
≤ 4ρnT

n(n−1) . Then, for all λ > 0 we have
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Think it should be

P

 4

n(n− 1)

∣∣∣∣∣∣
n∑

i<j

ai,j

〈
β,W

(2,k+1)
n,ij

〉
− E

[
ai,j

〈
β,W

(2,k+1)
n,ij

〉
|(ωi)

]∣∣∣∣∣∣ ≥ 2
√
2a1λ√

n(n− 1)
Tρ3/2n

 ≤ 2G · exp
(
− λ

)
,

(88)

where G is some constant from Lemma D.2. Moreover we notice that E
[
ai,j

〈
β,W

(2,k+1)
n,ij

〉
|(ωi)

]
=

Wn,i,j

〈
β,W

(2,k+1)
n,ij

〉
. Therefore, we obtain that

P

(∣∣K2
n(β)

∣∣ ≥ 2
√
2a1λ√

n(n− 1)
ρ3/2n T

)
≤ 2G · exp

(
− λ

)
(89)

Then, we derive a concentration bound for K1
n(β), for a fixed vector β ∈ S. The randomness in K1

n(β) term comes from
the latent features ωi and we observe that it is a U-Statistic with two variables. To bound the desired quantity, we use the
following

Lemma F.3 (Equation (5.7) from (Hoeffding, 1963)). Let X1, X2, . . . , XN be independent random variables. For r ≤ n,
consider a random variable of the form

U =
1

n(n− 1) . . . (n− r + 1)

∑
i1 ̸=i2 ̸=... ̸=ir

g(Xi1 , . . . , Xir ).

Then if a ≤ g(x1, x2, . . . , xr) ≤ b, it follows that

P(|U − E[U ]| ≥ t) ≤ e−2⌊n/r⌋t2/(b−a)2

To use this quantity, we first bound Kn(β). Using Equation (108), we have∣∣∣∣〈β,W (2,k+1)
n,ij

〉2
− 2Wn,i,j

〈
β,W

(2,k+1)
n,ij

〉
+ (Wn,ij)

2

∣∣∣∣ (90)

≤ ρ2n(T 2 + 2T + 1) (91)

= ρ2n(T + 1)2 (92)

Hence, for a fixed β0, we have that

P
(
|K1

n(β0)− E[K1
n(β0)]| ≥ t

)
≤ 2 exp

( −⌊n2 ⌋t
2

2ρ4n(T + 1)4

)
. (93)

We now use continuity to argue that |Kn(β)−E[Kn(β)]| is bounded for all β in the ϵ-ball containing β0. we derive a bound
on |(Kn(β1)− E[Kn(β1)])− (Kn(β2)− E[Kn(β2)]| for when ∥β1 − β2∥1 ≤ ϵ. We can use the triangle inequality and
bound |Kn(β1)−Kn(β2)| and |E[Kn(β1)]− E[Kn(β2)]| separately.

We can write

|E[Kn(β1)]− E[Kn(β2)]| =
∣∣∣∣E [(〈β1,W (2,k+1)

n,ij

〉
− ρnWij

)2]
− E

[(〈
β2,W

(2,k+1)
n,ij

〉
− ρnWij

)2]∣∣∣∣ (94)

=
∣∣∣E [〈β1 − β2,W (2,k+1)

n,ij

〉(〈
β1 + β2,W

(2,k+1)
n,ij

〉
− 2ρnWij

)]∣∣∣ (95)

≤ ρ3nϵ · 2(T + 1) (96)

where the ρ2nϵ term is from the first term: the L1 norm of β1 − β2 is bounded by ϵ, and each entry in the vector W (2,k+1)
n,ij is

bounded by ρ2n. The factor of ρn(T + 1) is using Equation (108).
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In a similar way, we can bound |Kn(β1)−Kn(β2)|. We first bound the quantity∣∣∣∣∣∣ 2

n(n− 1)

∑
i<j

(〈
β1,W

(2,k+1)
n,ij

〉2
−
〈
β2,W

(2,k+1)
n,ij

〉2)∣∣∣∣∣∣ (97)

=

∣∣∣∣∣∣ 2

n(n− 1)

∑
i<j

〈
β1 − β2,W (2,k+1)

n,ij

〉
·
〈
β1 + β2,W

(2,k+1)
n,ij

〉∣∣∣∣∣∣ (98)

≤ ρ3nϵ · 2T (99)

Then we can bound ∣∣∣∣∣∣ 2

n(n− 1)

∑
i<j

(
2aij

〈
β1,W

(2,k+1)
n,ij

〉
− 2aij

〈
β2,W

(2,k+1)
n,ij

〉)∣∣∣∣∣∣ (100)

≤ 2

n(n− 1)

∑
i<j

∣∣∣2aij 〈β1 − β2,W (2,k+1)
n,ij

〉∣∣∣ (101)

≤ max
i<j

∣∣∣〈β1 − β2,W (2,k+1)
n,ij

〉∣∣∣ · 2

n(n− 1)

∑
i<j

|2aij | (102)

≤ 4ϵρ3n, (103)

where the last inequality comes from conditioning on the event mentioned at the beginning of the proof. From here, we can
see that

|(Kn(β1)− E[Kn(β1)])− (Kn(β2)− E[Kn(β2)])| ≤ ρ3nϵ(4T + 6) (104)

This implies that

P

(
sup
β∈Sϵ

|Kn(β)− E[Kn(β)]| ≥ t+
2
√
2a1λ√

n(n− 1)
Tρ3/2n + ρ3nϵ(4T + 6)

)
(105)

≤ 2 · card(Sϵ) exp

( −⌊n2 ⌋t
2

2ρ4n(T + 1)4

)
− 2G exp(−λ) (106)

Choosing

t = ρ2n(T + 1)2

√
1

4⌊n2 ⌋
log

(
4 · card(Sϵ)

δ

)
, and λ = log

(
4G

δ

)
,

we have that with probability 1− δ,

sup
β∈F
|Kn(β)− E[Kn(β)]| ≤ ρ2n(T + 1)2

√
1

4⌊n2 ⌋
log

(
4 · card(Sϵ)

δ

)
+

2
√
2a1λ√

n(n− 1)
Tρ3/2n log(4G/δ) + ρ3nϵ(4T + 6).

Choose ϵ = 1√
n
. Recall that

card(Sϵ) ≤
1

ρ
k(k+1)/2
n

(
k

ϵ

)k k∏
i=1

bi

⇒ log(card(Sϵ)) ≤ k log(k) + k log(1/ϵ) +
k(k + 1)

2
log(1/ρn) + log

(
k∏

i=1

bi

)
.

Then, we conclude that with probability at least 1− δ,

sup
β∈F
|Kn(β)− E[Kn(β)]| ≤ Õ

(
ρ2n(T + 1)2√

n

)
,
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where the Big-O constant depends on
√
log(1/δ).

Lemma F.4. Let F =
∏k

i=1[−ai, ai] be a subset of Rk, where ai = bi/ρ
i
n for some bi > 0. Define D =

∑k
i=1 |bi|, and for

β ∈ F , define

S2(β) :=
2

n(n− 1)

∑
i<j

[
2⟨β, q̂(2,k+1)

ij −W (2,k+1)
n,ij ⟩(⟨β,W (2,k+1)

n,ij ⟩ − aij)
]
.

Then with probability at least 1− 5/n− n · exp(−δWρn(n− 1)/3),

S2(c) ≤ 2Dρn · r(n, dn, k) · (T + 2), (107)

where T = (1− δW )
∑k

r=1 br(1− δW )r.

Proof of Lemma F.4. In the proof of this lemma, we are inherently conditioning on all of the events that the proof of
Proposition D.8 conditions on. Specifically, we are conditioning on the event that

sup
i ̸=j∈[n]

∣∣∣q̂(k)i,j −W
(k)
n,i,j

∣∣∣ ≤ ρk−1
n√
n− 1

log(n)k
[
3ak
√
ρn +

96ak−1√
dn

]
,

and that

max
i∈[n]

1

n− 1

∑
j≤n

j ̸=i

aij < 2ρn ⇒
2

n(n− 1)

∑
i<j

aij < 2ρn.

We first consider S2(β) for some arbitrary β ∈ S.

S2(β) ≤
2

n(n− 1)

∣∣∣∣∣∣
n∑

i<j

2⟨β, q̂(2,k+1)
ij −W (2,k+1)

n,ij ⟩
(
⟨β,W (2,k+1)

n,ij ⟩ − aij
)∣∣∣∣∣∣

≤ 2 · 2

n(n− 1)

n∑
i<j

∣∣∣⟨β, q̂(2,k+1)
ij −W (2,k+1)

n,ij ⟩
(
⟨β,W (2,k+1)

n,ij ⟩ − aij
)∣∣∣

= 2 · 2

n(n− 1)

n∑
i<j

∣∣∣⟨β, q̂(2,k+1)
ij −W (2,k+1)

n,ij ⟩
∣∣∣ ∣∣∣(⟨β,W (2,k+1)

n,ij ⟩ − aij
)∣∣∣

≤ 2D · r(n, dn, k) ·
2

n(n− 1)

n∑
i<j

∣∣∣⟨β,W (2,k+1)
n,ij ⟩ − aij

∣∣∣
≤ 2D · r(n, dn, k) ·

2

n(n− 1)

n∑
i<j

( ∣∣∣⟨β,W (2,k+1)
n,ij ⟩

∣∣∣+ aij

)

≤ 2D · r(n, dn, k) ·
2

n(n− 1)

 n∑
i<j

∣∣∣⟨β,W (2,k+1)
n,ij ⟩

∣∣∣+ n∑
i<j

aij
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We write

|⟨β,W (2,k+1)
n,ij ⟩| ≤

∣∣∣∣∣
mW∑
r=1

βr · ρr+1
n W

(r+1)
i,j

∣∣∣∣∣
≤

∣∣∣∣∣
mW∑
r=1

βr · ρr+1
n (1− δW )r+1

∣∣∣∣∣
≤

mW∑
r=1

br
ρrn
· ρr+1

n (1− δW )r+1

≤ ρn (1− δW )

mW∑
r=1

br(1− δW )r︸ ︷︷ ︸
T

(108)

This yields the bound

S2(β) ≤ 2Dρn · r(n, dn, k) · (T + 2),

where T = (1− δW )
∑mW

r=1 br(1− δW )r.

Lemma F.5. Let F =
∏k

i=1[−ai, ai] be a subset of Rk, where ai = bi/ρ
i
n for some bi > 0. Define D =

∑k
i=1 |bi|, and for

β ∈ F , define

S3(β) :=
2

n(n− 1)

∑
i<j

⟨β, q̂(2,k+1)
ij −W (2,k+1)

n,ij ⟩2.

Then with probability at least 1− 5/n− n · exp(−δWρn(n− 1)/3),

S3(β) ≤ D2 · r(n, dn, k)2.

Proof of Lemma F.5. We bound this term as in the proof of Lemma F.4. It directly follows that

2

n(n− 1)

∑
i<j

⟨β, q̂(2,k+1)
ij −W (2,k+1)

n,ij ⟩2 ≤ D2 · r(n, dn, k)2

G. Proof of Proposition 4.5
In this section, we state a formal version of Proposition 4.5 and provide the proof.
Proposition G.1 (Proposition 4.5, Formal). Consider a k-community symmetric stochastic block model (see Appendix A.3
for the definition) with parameters p > q and sparsity factor ρn, which has eigenvalues µ1 = p+(k−1)q

k > p−q
k = µ2. Fix

some L ≥ 1 and define F = {β ∈ RL+1| ||β||L1 ≤ (µ1ρn)
−1}.

Produce probability estimators p̂i,j for the probability of an edge between vertices i and j using Algorithm 1 and Algorithm 2.
Let r(n, dn, L+ 1) be defined as in Theorem 4.4. Suppose that n, dn satisfy

4µ2

k

r(n, dn, L+ 1)

ρn
+

4

k2µ1

(
r(n, dn, L+ 1)

ρn

)2

+
4

(k − 1)

r(n, dn, L+ 1)

ρn
(T + 2)

+
2

(k − 1)µ1

(
r(n, dn, L+ 1)

ρn

)2

+
Aµ1√
n

log(n)

k − 1
≤ µ3

2,

where A is a constant that depends on
√

log(1/δ), for some positive constant δ > 0.

Let Sin = {(i, j)|i, j belong to the same community} and Sout = {(k, ell)|k, lk, ℓ belong to different communities}. Then,
with probability at least 1− 5/n− exp(−δWρn · (n− 1))− δ, the following event occurs:{

min
(i,j)∈Sin

p̂i,j > max
(k,ℓ)∈Sout

p̂k,ℓ

}
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Proof of Proposition 4.5. Consider a k-community symmetric SBM with connection matrix P , where Pi,i = p for all i ∈ k
and Pi,j = q for all i ̸= j. We first write the eigen-decomposition of this matrix; there are two eigenvalues and we write an
orthogonal basis for their eigenspaces.

λ1 = p+ q(k − 1) :




1
1
1
...
1




, λ2 = p− q :





1
−1
0
0
...
0


,



1
1
−2
0
...
0


,



1
1
1
−3

...
0


, . . . ,



1
1
1
1
...

−(k − 1)




.

According to Lemma A.1, the eigenvalues of the corresponding graphon W representation are p−q
k and p+q(k−1)

k . Call
the eigenvalues µ1 and µ2, and let µ1 > µ2 without loss of generality. The eigenfunctions ϕi of W are also given by
Lemma A.1, and are essentially scaled versions of the above eigenvectors. For the remainder of this proof, we assume that
the graph was generated from ρnW for some sparsity factor ρn.

Define pn = ρnp, qn = ρnq. Using that Wn(x, y) =
∑

r(ρnµr)ϕr(x)ϕr(y), we see that

pn = ρnµ1 + ρnµ2

[
k−1∑
r=1

k

r(r + 1)

]
︸ ︷︷ ︸

C1

, qn = ρnµ1 + ρnµ2

[
−k
2
+

k−1∑
r=2

k

r(r + 1)

]
︸ ︷︷ ︸

C2

.

Now suppose that a graph G = (V,E) = ([n], E) is generated from Wn. We demonstrate that under the conditions
mentioned in Proposition 4.5, Algorithm 1 and Algorithm 2 results in probability predictions p̂i,j so that p̂i,j > p̂k,ℓ when
ci = cj and ck ≤ cℓ. In other words, the probability predictions for all of the intra (within) community edges are higher
than the probability predictions for all of the inter (across) community edges.

As in the proposition statement, define F = {β ∈ RL+1| ||β||L1 ≤ (µ1ρn)
−1}, and suppose that L ≥ 1 is the number of

layers that are computed. In other words, LG-GNN computes the set of embeddings {λ0i , λ1i , . . . , λLi } for all i, and for each

pair of vertices i, j, it computes moment estimators
{
q̂
(2)
i,j , q̂

(3)
i,j , . . . , q̂

(L+2)
i,j

}
.

Then, in Algorithm 2, we solve the optimization problem

β̂n,L+1 = argmin
β∈F

∑
i<j

(
aij −

〈
β, q̂

(2,3,...,L+2)
i,j

〉)2
.

For i = 1, 2 and any β ∈ RL+1, define µ̂n,i(β) =
∑m

r=1 βr(ρnµi)
r+1, where the subscript n makes implicit that there is

dependence on ρn. Defining

R(β) = E
[(〈

β,W (2,L+2)
n (x, y)

〉
−Wn(x, y)

)2]
,

we note that for any fixed β ∈ F , we have that

R(β) = (ρnµ1 − µ̂n,1(β))
2 + (k − 1) · (ρnµ2 − µ̂n,2(β))

2.

Let ωi, ωj be the latent features of two vertices that both correspond to being in community 1, and let ωk, ωℓ be the latent
features of two vertices that correspond to being in communities 1 and 2, respectively. Now, suppose that for the edges (i, j)
and (k, ℓ), LG-GNN assigns them predicted probabilities p̂i,j =

〈
β̂n,L+1, q̂

(2,...,L+2)
i,j

〉
, p̂k,ℓ =

〈
β̂n,L+1, q̂

(2,...,L+2)
k,ℓ

〉
,

respectively, and suppose that p̂k,ℓ > p̂i,j . Consider

p̂i,j =
〈
β̂n,L+1, q̂

(2,...,L+2)
i,j

〉
=
〈
β̂n,L+1,W

(2,...,L+2)
n,i,j

〉
+
〈
β̂n,L+1, q̂

(2,...,L+2)
i,j −W (2,...,L+2)

n,i,j

〉
= µ̂n,1(β̂

n,L+1) + C1µ̂n,2(β̂
n,L+1) +

〈
β̂n,L+1, q̂

(2,...,L+2)
i,j −W (2,...,L+2)

n,i,j

〉
,
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where we simplified the first term this way in the last equality by using the form of the eigenvectors ϕr, and noting that
ωi, ωj both correspond to vertices in community 1. In a similar way, we have that

p̂k,ℓ =
〈
β̂n,L+1, q̂

(2,...,L+2)
k,ℓ

〉
=
〈
β̂n,L+1,W

(2,...,L+2)
n,k,ℓ

〉
+
〈
β̂n,L+1, q̂

(2,...,L+2)
k,ℓ −W (2,...,L+2)

n,k,ℓ

〉
= µ̂n,1(β̂

n,L+1) + C2µ̂n,2(β̂
n,L+1) +

〈
β̂n,L+1, q̂

(2,...,L+2)
k,ℓ −W (2,...,L+2)

n,k,ℓ

〉
,

Hence, if p̂k,ℓ > p̂i,j , then noting that C1 − C2 = k, we have

kµ̂2(β̂
n,L+1) <

〈
β̂n,L+1, q̂

(2,...,L+2)
k,ℓ −W (2,...,L+2)

n,k,ℓ

〉
−
〈
β̂n,L+1, q̂

(2,...,L+2)
i,j −W (2,...,L+2)

n,i,j

〉
We note that Proposition 4.1 states that with probability at least 1− 5/n− n · exp(−δWρn(n− 1)/3)− δ, we have that for
all 2 ≤ k ≤ L+ 2, ∣∣∣q̂(k)i,j −W

(k)
n,i,j

∣∣∣ ≤ ρk−1
n√
n− 1

log(n)k
[
3ak
√
ρn +

96ak−1√
dn

]
,

for some constants ak, and also that the conclusion from Lemma F.2 holds. We will be conditioning on these events for the
remainder of the proof. We also note that

r(n, dn, L+ 2) := max
2≤k≤L+2

ρ−(k−1)
n

(
ρk−1
n√
n− 1

log(n)k
[
3ak
√
ρn +

96ak−1√
dn

])
= max

2≤k≤L+2

log(n)k√
n− 1

[
3ak
√
ρn +

96ak−1√
dn

]
= o(ρn) if ρn ≫ ρ2(L+2)

n n

Using these definitions, noting that
∥∥∥β̂n,L+1

∥∥∥
L1
≤ 1

µ1ρn
, we have that

µ̂n,2(β̂
n,L+1) <

2

kµ1
r(n, dn, L+ 1).

Define β0 = (1/(µ1ρn), 0, 0, . . . , 0) ∈ Rm to have 1/µ1 as the first component, and 0 everywhere else. Now, we note that
Lemma E.2 states, with the same probability above, that

R(β0)−R(β̂n,L+1) = Rn(β0)−Rn(β̂
n,L+1) + P,

where

|P | ≤ 4

µ1
ρn · r(n, dn, L+ 1)(T + 2) +

2

µ2
1

· r(n, dn, L+ 1)2 +A
ρ2n√
n
log(n),

where T = p2

µ1
and A is some constant that depends on

√
log(1/δ). We also note that Rn(β0) − Rn(β̂

n,L+1) ≥ 0

because β̂n,L+1 is the minimizer of the empirical risk. This implies that R(β0) ≥ R(β̂n,L+1) + P. So, noting that

R(β0) = ρ2n(k − 1)
(
µ2 − µ2

2

µ1

)2
, and noting that µ2

µ1
< 1,

ρ2n(k − 1)

(
µ2 −

µ2
2

µ1

)2

≥ (ρnµ1 − µ̂n,1(β̂
n,L+1))2 + (k − 1)(ρnµ2 − µ̂n,2(β̂

n,L+1))2 + P

⇒ ρ2n(k − 1)

(
µ2 −

µ2
2

µ1

)2

≥ (k − 1)(ρnµ2 − µ̂n,2(β̂
n,L+1))2 + P

⇒ 0 < ρ2n
µ3
2

µ1

[
2− µ2

µ1

]
≤ (2ρnµ2µ̂n,2(β̂

n,L+1) + µ̂n,2(β̂
n,L+1)2)− P

k − 1
.

However, this is a contradiction when |(2ρnµ2µ̂n,2(β̂
n,L+1) − µ̂n,2(β̂

n,L+1)2) − P
k−1 | < ρ2n

µ3
2

µ1

[
2− µ2

µ1

]
. Consider the

bounds

|P | ≤ 4

µ1
ρn · r(n, dn, L+ 1)(T + 2) +

2

µ2
1

· r(n, dn, L+ 1)2 +A
ρ2n√
n
log(n)
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Hence, when

4ρnµ2

kµ1
r(n, dn, L+ 1) +

4

k2µ2
1

r(n, dn, L+ 1)2 +
4ρn

(k − 1)µ1
r(n, dn, L+ 1)(T + 2)

+
2

(k − 1)µ2
1

r(n, dn, L+ 1)2 +A
ρ2n√
n

log(n)

k − 1
≤ ρ2n

µ3
2

µ1
,

the result follows. Dividing both sides by ρ2n, and multiplying by µ1, the above is equivalent to

4µ2

k

r(n, dn, L+ 1)

ρn
+

4

k2µ1

(
r(n, dn, L+ 1)

ρn

)2

+
4

(k − 1)

r(n, dn, L+ 1)

ρn
(T + 2)

+
2

(k − 1)µ1

(
r(n, dn, L+ 1)

ρn

)2

+
Aµ1√
n

log(n)

k − 1
≤ µ3

2.

The result follows.

H. Proof of Proposition 6.1
Note that in this proof, we assume that the sparisity factor ρn = 1. Consider a 2-community stochastic block model (see

Appendix A.3 for more details) parameterized by the matrix
(
p r
r q

)
. The eigenvalues and eigenvectors are given by

λ1 =
1

2
(p+ q +A) , v1 =

(
p−q+A

2r
1

)
, λ2 =

1

2
(p+ q −A) , v2 =

(
p−q−A

2r
1

)
,

where A =
√
(p− q)2 + 4r2. Then, recall that Lemma A.1 states that the eigenvalues of the graphon representation W of

this SBM has eigenvalues µi =
1
2λi. We also use the eigenfunctions ϕi for W as written in Lemma A.1. We recall that

Lemma D.4 states that for all L ≥ 0, we have

E
[
⟨λLi , λLj ⟩|A, (ωi)

n
i=1

]
=

L∑
q1=0

L∑
q2=0

(
L

q1

)(
L

q2

)
Ŵ

(q1+q2+2)
n,i,j

Then, the proof of Proposition D.8 implies that for all i, j,

⇒ ⟨λLi , λLj ⟩
p→

L∑
q1=0

L∑
q2=0

(
L

q1

)(
L

q2

)
W

(q1+q2+2)
n,i,j

In this proof, we let ci denote the community of vertex i and let Sj denote all of the vertices in community j. In the
graphon reprentation of this 2-community SBM, if ωi is the latent feature for vertex i, then ωi ∈ [0, 1/2) if and only if
vertex i belongs to community 1, and ωi ∈ [1/2, 1] if and only if vertex i belongs to community 2. To reflect this and
simplify notation, we let Wn,Si,Sj

:=Wn(ωa, ωb), where ωa and ωb are any ω ∈ [0, 1] so that correspond to the appropriate
communities. For example, Wn,S1,S1

=Wn(1/4, 1/4) = p, which is the probability that two vertices in community 1 are
connected. We write the above as

sup
k∈Si,ℓ∈Sj

∣∣∣∣∣⟨λLk , λLℓ ⟩ −
L∑

q1=0

L∑
q2=0

(
L

q1

)(
L

q2

)
W

(q1+q2+2)
n,Si,Sj

∣∣∣∣∣ p→ 0

In the remainder of the proof, we choose parameters p, q, r ∈ [0, 1] so that
∑k1

q1=0

∑k2

q2=0

(
k1

q1

)(
k2

q2

)
W

(q1+q2+2)
n,S2,S2

=∑k1

q1=0

∑k2

q2=0

(
k1

q1

)(
k2

q2

)
W

(q1+q2+2)
n,S1,S2

, but Wn,S2,S2
̸= Wn,S1,S2

(this last equality indicates that the connection proba-
bility between two vertices in community 2 is different than the connection probability between a vertex in community 1
and a vertex in community 2). This would suffice for the proof, since the continuous mapping theorem would imply that for
any continuous function f ,
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sup
k∈S1,ℓ∈S2

∣∣∣∣∣f (⟨λLk , λLℓ ⟩)− f
(

L∑
q1=0

L∑
q2=0

(
L

q1

)(
L

q2

)
W

(q1+q2+2)
n,S1,S2

)∣∣∣∣∣ p→ 0

sup
k∈S2,ℓ∈S2

∣∣∣∣∣f (⟨λLk , λLℓ ⟩)− f
(

L∑
q1=0

L∑
q2=0

(
L

q1

)(
L

q2

)
W

(q1+q2+2)
n,S2,S2

)∣∣∣∣∣ p→ 0,

and we note that Wn,S2,S2 ̸=Wn,S1,S2 . With this in mind, consider

L∑
q1=0

L∑
q2=0

(
L

q1

)(
L

q2

)
W

(q1+q2+2)
n,Si,Sj

=

L∑
q1=0

L∑
q2=0

(
L

q1

)(
L

q2

)( 2∑
r=1

µq1+q2+2
r ϕr(Si)ϕr(Sj)

)

=

2L∑
k=0

2∑
r=1

(
2L

k

)
µk+2
r ϕr(Si)ϕr(Sj)

=

2∑
r=1

µ2
r(µr + 1)2Lϕr(Si)ϕr(Sj)

Substituting in the forms of the eigenvectors ϕ1, ϕ2, it suffices to show that there exist values of p, q, r, with q ̸= r, so that

µ2
1(µ1 + 1)2L + µ2

2(µ2 + 1)2L =
p− q +A

2r
µ2
1(µ1 + 1)2L +

p− q −A
2r

µ2
2(µ2 + 1)2L

⇔ µ2
2(µ2 + 1)2L(2r − (p− q) +A) = µ2

1(µ1 + 1)2L(−2r + (p− q) +A),

which would suffice for the proof. Recall that A =
√
(p− q)2 + 4r2, µ1 = 1

4 (p + q + A), and µ2 = 1
4 (p + q − A).

Choosing q = 0 and substituting these values in, we obtain that the above is equivalent to(
p−

√
p2 + 4r2

)2(1

4
(p−

√
p2 + 4r2) + 1

)2L

(2r − p+
√
p2 + 4r2)︸ ︷︷ ︸

(1)

−
(
p+

√
p2 + 4r2

)2(1

4
(p+

√
p2 + 4r2) + 1

)2L

(p− 2r +
√
p2 + 4r2)︸ ︷︷ ︸

(2)

= 0

We show that there exist values p and r, r ̸= 0, so that there exists a root for some p, r ∈ (0, 1). We will fix p = ϵ≪ 1 to be
some small number to be decided later. ϵ might depend on L. Since this function is continuous in all variables, we use the
intermediate value theorem (by varying r) to deduce that there exists a root for some sufficiently small p. Firstly, we observe
that limr↓0(1) = 0. On the other hand, limr↓0(2) = (2p)3(1 + p/2)2L > 0. This implies that (1)− (2) < 0 for sufficiently
small r. Then, it suffices to argue that (1)− (2) > 0 for r = 1, as then the intermediate value theorem implies the desired
result.

Let p = ϵ. Taylor’s theorem implies that
√
ϵ2 + 4 = 2 + ϵ2

4 +O(ϵ4). Hence, we can write (1) as

(1) =
(
2− ϵ+O(ϵ2)

)2(1

2
+

1

4
ϵ+O(ϵ2)

)2L

(4− ϵ+O(ϵ2)).

We can also write

(2) = (2 + ϵ+O(ϵ2))

(
3

2
+

1

4
ϵ+O(ϵ2)

)2L

(ϵ+O(ϵ2)).

We note that the first two terms in both (1) and (2) are of constant order (the constants are difference, but both of constant
order). However, the third term in (1) is of constant order, but the third term in (2) is of order ϵ. This implies that for
sufficiently small ϵ, (1)− (2) < 0. This suffices to imply that for this small enough ϵ, there is some r > 0 so that (1)− (2)
has a root. This suffices for the proof.
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I. Experiments
We present three different sets of results. The first is for real-data (the Cora dataset), and we use the in-sample train/test
splitting scheme for this. The second are in-sample experiments for a variety of random graph models, and the third set are
out-sample experiments for these random graph models. For clarity, we explain and define the metrics we are using in the
experiments. For the real-data experiments, we consider only the in-sample setting, while for the random graph experiments,
we consider both the in-sample and out-of-sample settings.

One point of clarification is that our link prediction procedure is not simply to guess a particular edge to be a positive edge
if its predicted probability is over 0.5. If the graphon W (·, ·) < 0.5, then this doens’t make sense because the LG-GNN
estimates the underlying probability of edges.

Instead, we concern ourselves more with the ranking of the edges and choose evaluation metrics to reflect that. Concretely, we
evaluate our algorithms on whether they are able to assign higher probabilities to edges with higher underlying probabilities
(and in the real-data case, whether they are able to assign higher probabilities to the positive edges than to the negative edges
in the testing set).

To reflect this, the principle metrics we use are the AUC-ROC, Hits@k (as is standard for link prediction tasks in the
Stanford Open Graph Benchmark) for the real data experiments. For the random graphs, introduce a new metric called the
Probability Ratio@k, defined below, which is inspired by the Hits@K metric.

I.1. Train/Test Splits

We first describe our train/test split procedures.

I.1.1. IN-SAMPLE (RANDOM GRAPH)

We generate a graph G = (V,E) with V = [n] (n vertices). Let N be the set of non-edges. Concretely, N = {(i, j), i ̸=
j ∈ [n]|(i, j) ̸∈ En}. We then split the edges into a train, validation, and testing set as follows.

For each edge e ∈ E, we remove it from the graph (independently from all the other edges) with probability p = 0.2. The
edges that are not removed are labelled Etrain. The set Etrain will be the set of positive training edges. Among the edges
that were removed, half of those will be the set of positive validation edges and the remaining will be the set of positive test
edges. Call these Eval and Etest, respectively. During training, message passing only occurs along the edges in Etrain.

Now, we select the negative edges among the set of edges N ∪ Etest. Specifically, 1 − p fraction of these edges will be
the negative training edges, p/2 fraction will be the negative validation edges, and the remaining p/2 fraction will be the
negative testing edges.

It is important to pick the negative training edges from the set N ∪ Etest, as opposed to simply from N . If the negative
training edges were sampled only from N , then this would give implicit information about where the edges are in the graph.
The model should not have access to which edges are in Etest vs in N a priori; if the negative training edges that were given
to it are only from N , then it would implicitly know that the edges in Etest are less likely to be negative edges. Indeed,
when we trained the GCN on a 2-community SBM with parameters 80 and 20 in the setting in which the negative training
edges were sampled only from N , it was able to estimate the underlying parameters 80 and 20 almost perfectly, which
should be impossible if it only had access to a graph with edges removed.

I.1.2. IN-SAMPLE (REAL DATA)

For real data, we use the same train/test split procedure as described above. However, during training and testing, we do not
use the entire set of negative edges. This is because the graph is very sparse, and hence there are many more negative edges
than positive edges. This makes link prediction difficult and causes the training procedure to be erratic.

I.1.3. OUT-SAMPLE

For each random graph model, we generate a graph G = (V,E) with V = [n] (n vertices). We partition V = V1 ∪ V2,
where V1 contains a random 1− p = 0.8-fraction of the original set of vertices, and V2 contains the remaining p fraction.
Let G1 be the subgraph induced by V1 (i.e., the set of all positive and negative edges with both endpoints in V1). Let E1 be
the set of edges that have both endpoints in V1. Let E2 be the set of edges that have at least one vertex in V2, and let N2 be
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the set of negative edges with at least one vertex in V2.

We pick a random 1− p fraction of the positive and negative edges from G1 to be the training positive and negative edges,
and the remaining p fraction to be the validation edges. Then, we pick p fraction of the positive edges in E2 and p fraction
of the negative edges in N2 to be the testing edges. The remaining edges in E2 and N2 we will refer to as message-passing
edges.

We first train the models on the positive + validation edges. Then once the model is trained, we compute the embedding
vectors by running message passing on the set of train + message passing edges. Finally, we do edge prediction on the
testing edges.

I.2. Definition of Probability Ratio

Let P (e) be the underlying probability of an edge e = (i, j). In the graphon model, P ((i, j)) =Wn(ωi, ωj), and note that
we have access to these values. Given a set of edges E = {ei = (vi,1, vi,2)}|E|

i=1, we say that a link prediction algorithm
ranks the edges as ei1 > ei2 > · · · > ei|E| if p̂ei1 > p̂ei2 > · · · > p̂ei|E|

, where p̂e is the probability that the algorithm
predicts for the edge e. Given some edge ranking as above, define the total predicted probability as

Ppred,k :=

k∑
r=1

P (eir )

and the maximum probability as

Pmax,k := max
e1 ̸=e2 ̸=...̸=ek∈E

k∑
r=1

P (er).

In other words, the Pmax,k is the sum of the probabilities of the top k most likely edges in E. Then, the probability ratio is
defined as Ppred,k/Pmax,k.

In essence, the Probability Ratio@k captures what fraction of the top k probabilities a link prediction algorithm can capture.
For example, suppose that there are three testing edges e1, e2, e3 with underlying probabilities 0.8, 0.5, 0.2, respectively.
Suppose that some edge prediction algorithm ranks the edges as e1 > e3 > e2. Then the Probability Ratio@2 is equal to
0.8+0.2
0.8+0.5 ≈ 0.77.

I.3. Real-Data: Cora

For the dataset, we perform a train/test split using the StellarGraph edge splitter, which randomly removes positive edges
while ensuring that the resulting graph remains connected. For the negative training edges, we sample an equal number of
negative edges as positive edges to train on. For the negative testing edges, we sample an equal number of negative edges as
positive testing edges.

I.3.1. RESULTS WITHOUT NODE FEATURES

Table 7. GCN does not have access to node features
Parameter Set Model Cross Entropy Hits@50 Hits@100

layers=2
GCN 0.645 ± 0.043 0.496 ± 0.025 0.633 ± 0.023
LG-GNN 2.953 ± 0.013 0.565 ± 0.012 0.637 ± 0.006
PLSG-GNN 0.679 ± 0.012 0.591 ± 0.014 0.646 ± 0.013

layers=4
GCN 0.689 ± 0.002 0.539 ± 0.008 0.665 ± 0.007
LG-GNN 2.682 ± 0.010 0.564 ± 0.005 0.620 ± 0.008
PLSG-GNN 0.660 ± 0.030 0.578 ± 0.014 0.637 ± 0.013

I.3.2. RESULTS WITH NODE FEATURES (GCN HAS ACCESS TO NODE FEATURES)
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Table 8. GCN has access to node features
Parameter Set Model Cross Entropy Hits@50 Hits@100

layers=2
GCN 0.487 ± 0.003 0.753 ± 0.019 0.898 ± 0.021
LG-GNN 3.034 ± 0.285 0.555 ± 0.027 0.603 ± 0.034
PLSG-GNN 0.679 ± 0.027 0.577 ± 0.033 0.626 ± 0.042

layers=4
GCN 0.661 ± 0.041 0.609 ± 0.072 0.776 ± 0.069
LG-GNN 2.711 ± 0.213 0.560 ± 0.013 0.601 ± 0.012
PLSG-GNN 0.677 ± 0.019 0.574 ± 0.025 0.625 ± 0.024

Figure 1 shows histograms of the predicted probabilities by each of the algorithms (with the two cases of the GCN having
access or not having access to the node features). This is to give a visual demonstrate as to what PLSG-GNN is doing. There
is a ”low probability” hump around 0.25, but then smaller peaks of high-probability predictions. The humps clearly separate
the edges in regimes of how connected they are and show clearly the properties of the graph topology.

47



Statistical Guarantees for Link Prediction using Graph Neural Networks

Figure 1. Plot of the predicted probabilities by the PLS Regression (row 1), GCN without node features (row 2), and GCN with node
features (row 3). The left column shows for 2 layers, the right column shows for 4 layers.
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J. Experiments (In-Sample)
J.1. 6SSBM (80-20)

6-community symmetric stochastic block model with connection probabilities 0.8 and 0.2.

Table 9. Symmetric Stochastic Block Model with Connection Probabilities 0.8, 0.2

Cross Entropy Prob Ratio @ 100 Prob Ratio @ 500 AUC ROC
Parameters Model

rho=1, layers=2 GCN 0.587 ± 0.010 1.000 ± 0.000 1.000 ± 0.000 0.697 ± 0.002
LG-GNN 0.563 ± 0.001 1.000 ± 0.000 1.000 ± 0.000 0.677 ± 0.003
PLSG-GNN 0.583 ± 0.004 1.000 ± 0.000 1.000 ± 0.000 0.673 ± 0.004

rho=1, layers=4 GCN 0.693 ± 0.000 0.973 ± 0.009 0.978 ± 0.006 0.640 ± 0.029
LG-GNN 0.532 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 0.697 ± 0.001
PLSG-GNN 0.579 ± 0.002 1.000 ± 0.000 0.999 ± 0.001 0.680 ± 0.002

rho=1/sqrt(n), layers=2 GCN 0.693 ± 0.000 0.388 ± 0.058 0.408 ± 0.006 0.503 ± 0.007
LG-GNN 0.090 ± 0.001 0.458 ± 0.035 0.450 ± 0.006 0.503 ± 0.007
PLSG-GNN 0.091 ± 0.002 0.398 ± 0.014 0.393 ± 0.010 0.491 ± 0.007

rho=1/sqrt(n), layers=4 GCN 0.693 ± 0.000 0.383 ± 0.009 0.376 ± 0.004 0.499 ± 0.007
LG-GNN 0.088 ± 0.000 0.430 ± 0.016 0.439 ± 0.013 0.505 ± 0.004
PLSG-GNN 0.089 ± 0.001 0.388 ± 0.009 0.388 ± 0.012 0.507 ± 0.001

rho=log(n)/n, layers=2 GCN 0.693 ± 0.000 0.382 ± 0.009 0.376 ± 0.012 0.458 ± 0.014
LG-GNN 0.021 ± 0.001 0.367 ± 0.004 0.389 ± 0.002 0.517 ± 0.006
PLSG-GNN 0.019 ± 0.000 0.370 ± 0.027 0.374 ± 0.012 0.521 ± 0.004

rho=log(n)/n, layers=4 GCN 0.693 ± 0.000 0.405 ± 0.007 0.380 ± 0.005 0.496 ± 0.010
LG-GNN 0.021 ± 0.000 0.470 ± 0.007 0.410 ± 0.003 0.505 ± 0.017
PLSG-GNN 0.019 ± 0.000 0.380 ± 0.004 0.375 ± 0.007 0.513 ± 0.010
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J.2. 6SSBM (55-45)

6-community symmetric stochastic block model with edge connection probabilities 0.55 and 0.45.

Table 10. Symmetric Stochastic Block Model with Connection Probabilities 0.55, 0.45

Cross Entropy Prob Ratio @ 100 Prob Ratio @ 500 AUC ROC
Parameters Model

rho=1, layers=2 GCN 0.693 ± 0.000 0.859 ± 0.004 0.852 ± 0.001 0.500 ± 0.001
LG-GNN 0.695 ± 0.000 0.849 ± 0.006 0.849 ± 0.003 0.500 ± 0.002
PLSG-GNN 0.693 ± 0.000 0.849 ± 0.006 0.849 ± 0.003 0.500 ± 0.002

rho=1, layers=4 GCN 0.693 ± 0.000 0.847 ± 0.000 0.846 ± 0.003 0.500 ± 0.000
LG-GNN 0.695 ± 0.000 0.848 ± 0.005 0.850 ± 0.002 0.500 ± 0.001
PLSG-GNN 0.693 ± 0.000 0.853 ± 0.005 0.851 ± 0.002 0.501 ± 0.001

rho=1/sqrt(n), layers=2 GCN 0.693 ± 0.000 0.847 ± 0.005 0.848 ± 0.001 0.502 ± 0.002
LG-GNN 0.130 ± 0.000 0.852 ± 0.001 0.849 ± 0.000 0.503 ± 0.006
PLSG-GNN 0.130 ± 0.001 0.850 ± 0.011 0.848 ± 0.004 0.506 ± 0.003

rho=1/sqrt(n), layers=4 GCN 0.693 ± 0.000 0.848 ± 0.002 0.847 ± 0.002 0.502 ± 0.006
LG-GNN 0.121 ± 0.001 0.849 ± 0.007 0.849 ± 0.001 0.502 ± 0.010
PLSG-GNN 0.131 ± 0.001 0.848 ± 0.005 0.852 ± 0.002 0.495 ± 0.004

rho=log(n)/n, layers=2 GCN 0.693 ± 0.000 0.853 ± 0.002 0.850 ± 0.002 0.489 ± 0.000
LG-GNN 0.031 ± 0.000 0.845 ± 0.007 0.850 ± 0.003 0.508 ± 0.008
PLSG-GNN 0.030 ± 0.001 0.852 ± 0.005 0.850 ± 0.002 0.496 ± 0.006

rho=log(n)/n, layers=4 GCN 0.693 ± 0.000 0.851 ± 0.004 0.848 ± 0.002 0.487 ± 0.004
LG-GNN 0.031 ± 0.001 0.847 ± 0.001 0.848 ± 0.003 0.492 ± 0.005
PLSG-GNN 0.030 ± 0.001 0.856 ± 0.007 0.852 ± 0.003 0.508 ± 0.017
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J.3. 10 SBM

10-community stochastic block model with parameter matrix P that has randomly generated entries. The diagonal entries
Pi,i are generated as Unif(0.5, 1), and Pi,j is generated as Unif(0,min(Pi,i, Pj,j)). The connection matrix is



0.9949 0.3084 0.4553 0.3747 0.6187 0.0052 0.2626 0.5787 0.4540 0.6768
0.3084 0.8309 0.6851 0.0571 0.5225 0.3345 0.1279 0.0197 0.7063 0.7795
0.4553 0.6851 0.7854 0.1000 0.7726 0.1882 0.1736 0.6723 0.3278 0.6033
0.3747 0.0571 0.1000 0.6160 0.1168 0.0965 0.0021 0.1856 0.3248 0.4507
0.6187 0.5225 0.7726 0.1168 0.8614 0.5492 0.1098 0.4278 0.6386 0.1171
0.0052 0.3345 0.1882 0.0965 0.5492 0.6623 0.4277 0.0070 0.1145 0.2878
0.2626 0.1279 0.1736 0.0021 0.1098 0.4277 0.5528 0.2016 0.5466 0.0410
0.5787 0.0197 0.6723 0.1856 0.4278 0.0070 0.2016 0.8805 0.5233 0.0777
0.4540 0.7063 0.3278 0.3248 0.6386 0.1145 0.5466 0.5233 0.9510 0.4890
0.6768 0.7795 0.6033 0.4507 0.1171 0.2878 0.0410 0.0777 0.4890 0.8526



Table 11. 10-community SBM with randomly generated parameters

Cross Entropy Prob Ratio @ 100 Prob Ratio @ 500 AUC ROC
Parameters Model

rho=1, layers=2 GCN 0.599 ± 0.001 0.878 ± 0.007 0.872 ± 0.007 0.764 ± 0.001
LG-GNN 0.588 ± 0.001 0.908 ± 0.008 0.867 ± 0.009 0.726 ± 0.002
PLSG-GNN 0.588 ± 0.001 0.909 ± 0.007 0.867 ± 0.006 0.727 ± 0.001

rho=1, layers=4 GCN 0.677 ± 0.003 0.737 ± 0.094 0.758 ± 0.106 0.672 ± 0.011
LG-GNN 0.562 ± 0.008 0.868 ± 0.042 0.868 ± 0.037 0.780 ± 0.002
PLSG-GNN 0.588 ± 0.001 0.896 ± 0.038 0.858 ± 0.023 0.728 ± 0.001

rho=1/sqrt(n), layers=2 GCN 0.693 ± 0.000 0.288 ± 0.022 0.315 ± 0.008 0.505 ± 0.003
LG-GNN 0.111 ± 0.002 0.561 ± 0.015 0.546 ± 0.023 0.515 ± 0.003
PLSG-GNN 0.110 ± 0.001 0.610 ± 0.008 0.577 ± 0.005 0.520 ± 0.005

rho=1/sqrt(n), layers=4 GCN 0.693 ± 0.000 0.298 ± 0.048 0.312 ± 0.043 0.512 ± 0.014
LG-GNN 0.105 ± 0.003 0.584 ± 0.036 0.564 ± 0.011 0.516 ± 0.008
PLSG-GNN 0.110 ± 0.002 0.589 ± 0.022 0.564 ± 0.003 0.517 ± 0.011

rho=log(n)/n, layers=2 GCN 0.693 ± 0.000 0.300 ± 0.017 0.307 ± 0.014 0.478 ± 0.019
LG-GNN 0.026 ± 0.000 0.486 ± 0.010 0.494 ± 0.005 0.525 ± 0.009
PLSG-GNN 0.024 ± 0.000 0.493 ± 0.012 0.490 ± 0.004 0.514 ± 0.018

rho=log(n)/n, layers=4 GCN 0.693 ± 0.000 0.312 ± 0.013 0.303 ± 0.010 0.517 ± 0.019
LG-GNN 0.026 ± 0.002 0.498 ± 0.004 0.494 ± 0.007 0.517 ± 0.014
PLSG-GNN 0.025 ± 0.001 0.496 ± 0.008 0.501 ± 0.006 0.514 ± 0.013
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J.4. Geometric Graph

Each vertex i has a latent feature Xi generated uniformly at random on Sd−1, d = 11. Two vertices i and j are connected if
⟨Xi, Xj⟩ ≥ t = 0.2, corresponding to a connection probability ≈ 0.26. Higher sparsity is achieved by adjusting t.

Table 12. Geometric Graph with threshold 0.2 (corresponding to a connection probability of ≈ 0.26)

Cross Entropy Prob Ratio @ 100 Prob Ratio @ 500 AUC ROC
Parameters Model

rho=1, layers=2 GCN 0.537 ± 0.012 1.000 ± 0.000 1.000 ± 0.000 0.886 ± 0.015
LG-GNN 0.354 ± 0.005 1.000 ± 0.000 1.000 ± 0.000 0.916 ± 0.004
PLSG-GNN 0.343 ± 0.006 1.000 ± 0.000 0.996 ± 0.003 0.918 ± 0.005

rho=1, layers=4 GCN 0.693 ± 0.000 0.900 ± 0.127 0.767 ± 0.075 0.759 ± 0.039
LG-GNN 0.305 ± 0.002 1.000 ± 0.000 1.000 ± 0.000 0.950 ± 0.002
PLSG-GNN 0.301 ± 0.002 1.000 ± 0.000 0.999 ± 0.001 0.956 ± 0.002

rho=1/sqrt(n), layers=2 GCN 0.693 ± 0.000 0.333 ± 0.062 0.232 ± 0.030 0.848 ± 0.007
LG-GNN 0.046 ± 0.002 0.637 ± 0.059 0.379 ± 0.020 0.822 ± 0.012
PLSG-GNN 0.046 ± 0.002 0.453 ± 0.076 0.293 ± 0.035 0.844 ± 0.012

rho=1/sqrt(n), layers=4 GCN 0.693 ± 0.000 0.410 ± 0.016 0.275 ± 0.021 0.883 ± 0.003
LG-GNN 0.045 ± 0.001 0.637 ± 0.054 0.377 ± 0.024 0.827 ± 0.003
PLSG-GNN 0.045 ± 0.001 0.530 ± 0.079 0.345 ± 0.012 0.848 ± 0.003

rho=log(n)/n, layers=2 GCN 0.693 ± 0.000 0.003 ± 0.005 0.019 ± 0.005 0.624 ± 0.018
LG-GNN 0.019 ± 0.001 0.163 ± 0.021 0.247 ± 0.005 0.607 ± 0.019
PLSG-GNN 0.019 ± 0.000 0.100 ± 0.024 0.097 ± 0.014 0.611 ± 0.009

rho=log(n)/n, layers=4 GCN 0.693 ± 0.000 0.003 ± 0.005 0.011 ± 0.009 0.608 ± 0.018
LG-GNN 0.019 ± 0.001 0.170 ± 0.022 0.237 ± 0.029 0.609 ± 0.032
PLSG-GNN 0.018 ± 0.001 0.133 ± 0.019 0.154 ± 0.023 0.634 ± 0.022
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K. Out-Sample Experiments
K.1. 6SSBM (80-20)

6-community symmetric stochastic block model with connection probabilities 0.8 and 0.2.

Table 13. Symmetric Stochastic Block Model with Connection Probabilities 0.8, 0.2

Cross Entropy Prob Ratio @ 100 Prob Ratio @ 500 AUC ROC
Parameters Model

rho=1, layers=2 GCN 0.610 ± 0.022 1.000 ± 0.000 1.000 ± 0.000 0.699 ± 0.001
LG-GNN 0.569 ± 0.004 0.998 ± 0.004 0.998 ± 0.001 0.682 ± 0.002
PLSG-GNN 0.730 ± 0.184 0.998 ± 0.004 0.999 ± 0.001 0.677 ± 0.002

rho=1, layers=4 GCN 0.693 ± 0.000 0.623 ± 0.106 0.581 ± 0.090 0.520 ± 0.004
LG-GNN 0.545 ± 0.004 1.000 ± 0.000 1.000 ± 0.000 0.698 ± 0.001
PLSG-GNN 0.585 ± 0.014 1.000 ± 0.000 0.997 ± 0.003 0.680 ± 0.001

rho=1/sqrt(n), layers=2 GCN 0.693 ± 0.000 0.448 ± 0.028 0.423 ± 0.005 0.502 ± 0.008
LG-GNN 0.092 ± 0.002 0.450 ± 0.031 0.436 ± 0.013 0.508 ± 0.004
PLSG-GNN 0.091 ± 0.002 0.405 ± 0.004 0.387 ± 0.003 0.503 ± 0.003

rho=1/sqrt(n), layers=4 GCN 0.693 ± 0.000 0.415 ± 0.006 0.387 ± 0.004 0.506 ± 0.006
LG-GNN 0.088 ± 0.002 0.460 ± 0.011 0.436 ± 0.008 0.501 ± 0.014
PLSG-GNN 0.089 ± 0.001 0.390 ± 0.019 0.382 ± 0.011 0.496 ± 0.007

rho=log(n)/n, layers=2 GCN 0.693 ± 0.000 0.382 ± 0.018 0.371 ± 0.008 0.488 ± 0.010
LG-GNN 0.021 ± 0.001 0.355 ± 0.024 0.371 ± 0.012 0.510 ± 0.019
PLSG-GNN 0.019 ± 0.001 0.387 ± 0.049 0.377 ± 0.015 0.491 ± 0.030

rho=log(n)/n, layers=4 GCN 0.694 ± 0.000 0.377 ± 0.022 0.379 ± 0.014 0.506 ± 0.015
LG-GNN 0.021 ± 0.000 0.460 ± 0.054 0.384 ± 0.011 0.499 ± 0.015
PLSG-GNN 0.018 ± 0.000 0.395 ± 0.013 0.376 ± 0.021 0.511 ± 0.011
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K.2. 6SSBM (55-45)

6-community symmetric stochastic block model with edge connection probabilities 0.55 and 0.45.

Table 14. Symmetric Stochastic Block Model with Connection Probabilities 0.55, 0.45

Cross Entropy Prob Ratio @ 100 Prob Ratio @ 500 AUC ROC
Parameters Model

rho=1, layers=2 GCN 0.693 ± 0.000 0.848 ± 0.006 0.850 ± 0.002 0.500 ± 0.002
LG-GNN 0.698 ± 0.002 0.845 ± 0.005 0.846 ± 0.003 0.500 ± 0.001
PLSG-GNN 0.694 ± 0.001 0.844 ± 0.003 0.846 ± 0.003 0.500 ± 0.001

rho=1, layers=4 GCN 0.693 ± 0.000 0.848 ± 0.004 0.850 ± 0.001 0.498 ± 0.001
LG-GNN 0.702 ± 0.001 0.847 ± 0.012 0.848 ± 0.004 0.499 ± 0.001
PLSG-GNN 0.695 ± 0.000 0.844 ± 0.011 0.850 ± 0.004 0.499 ± 0.001

rho=1/sqrt(n), layers=2 GCN 0.693 ± 0.000 0.851 ± 0.004 0.850 ± 0.002 0.496 ± 0.004
LG-GNN 0.131 ± 0.003 0.859 ± 0.010 0.851 ± 0.005 0.505 ± 0.011
PLSG-GNN 0.131 ± 0.002 0.844 ± 0.007 0.850 ± 0.001 0.505 ± 0.003

rho=1/sqrt(n), layers=4 GCN 0.693 ± 0.000 0.842 ± 0.008 0.847 ± 0.001 0.500 ± 0.009
LG-GNN 0.123 ± 0.001 0.850 ± 0.003 0.849 ± 0.001 0.497 ± 0.016
PLSG-GNN 0.130 ± 0.002 0.852 ± 0.008 0.848 ± 0.001 0.498 ± 0.012

rho=log(n)/n, layers=2 GCN 0.693 ± 0.000 0.844 ± 0.007 0.850 ± 0.001 0.488 ± 0.031
LG-GNN 0.030 ± 0.000 0.842 ± 0.002 0.846 ± 0.005 0.484 ± 0.011
PLSG-GNN 0.029 ± 0.001 0.851 ± 0.001 0.849 ± 0.002 0.505 ± 0.008

rho=log(n)/n, layers=4 GCN 0.693 ± 0.000 0.851 ± 0.004 0.847 ± 0.002 0.493 ± 0.024
LG-GNN 0.030 ± 0.002 0.844 ± 0.005 0.845 ± 0.003 0.488 ± 0.015
PLSG-GNN 0.028 ± 0.000 0.845 ± 0.009 0.846 ± 0.004 0.504 ± 0.002
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K.3. 10 SBM

10-community stochastic block model with parameter matrix P that has randomly generated entries. The diagonal entries
Pi,i are generated as Unif(0.5, 1), and Pi,j is generated as Unif(0,min(Pi,i, Pj,j)). The connection matrix is



0.9949 0.3084 0.4553 0.3747 0.6187 0.0052 0.2626 0.5787 0.4540 0.6768
0.3084 0.8309 0.6851 0.0571 0.5225 0.3345 0.1279 0.0197 0.7063 0.7795
0.4553 0.6851 0.7854 0.1000 0.7726 0.1882 0.1736 0.6723 0.3278 0.6033
0.3747 0.0571 0.1000 0.6160 0.1168 0.0965 0.0021 0.1856 0.3248 0.4507
0.6187 0.5225 0.7726 0.1168 0.8614 0.5492 0.1098 0.4278 0.6386 0.1171
0.0052 0.3345 0.1882 0.0965 0.5492 0.6623 0.4277 0.0070 0.1145 0.2878
0.2626 0.1279 0.1736 0.0021 0.1098 0.4277 0.5528 0.2016 0.5466 0.0410
0.5787 0.0197 0.6723 0.1856 0.4278 0.0070 0.2016 0.8805 0.5233 0.0777
0.4540 0.7063 0.3278 0.3248 0.6386 0.1145 0.5466 0.5233 0.9510 0.4890
0.6768 0.7795 0.6033 0.4507 0.1171 0.2878 0.0410 0.0777 0.4890 0.8526



Table 15. 10-community SBM with randomly generated parameters

Cross Entropy Prob Ratio @ 100 Prob Ratio @ 500 AUC ROC
Parameters Model

rho=1, layers=2 GCN 0.635 ± 0.014 0.709 ± 0.125 0.726 ± 0.108 0.716 ± 0.019
LG-GNN 0.586 ± 0.004 0.883 ± 0.016 0.843 ± 0.014 0.734 ± 0.005
PLSG-GNN 0.586 ± 0.004 0.886 ± 0.016 0.844 ± 0.013 0.735 ± 0.005

rho=1, layers=4 GCN 0.801 ± 0.193 0.645 ± 0.025 0.633 ± 0.027 0.578 ± 0.109
LG-GNN 0.564 ± 0.011 0.879 ± 0.011 0.886 ± 0.004 0.786 ± 0.002
PLSG-GNN 0.592 ± 0.004 0.883 ± 0.013 0.836 ± 0.015 0.732 ± 0.001

rho=1/sqrt(n), layers=2 GCN 0.693 ± 0.000 0.344 ± 0.021 0.318 ± 0.013 0.493 ± 0.004
LG-GNN 0.115 ± 0.002 0.580 ± 0.020 0.557 ± 0.007 0.497 ± 0.009
PLSG-GNN 0.112 ± 0.004 0.586 ± 0.035 0.561 ± 0.001 0.521 ± 0.008

rho=1/sqrt(n), layers=4 GCN 0.693 ± 0.000 0.285 ± 0.016 0.275 ± 0.006 0.486 ± 0.006
LG-GNN 0.105 ± 0.000 0.589 ± 0.016 0.563 ± 0.003 0.532 ± 0.003
PLSG-GNN 0.111 ± 0.002 0.578 ± 0.013 0.544 ± 0.009 0.508 ± 0.011

rho=log(n)/n, layers=2 GCN 0.693 ± 0.000 0.312 ± 0.011 0.316 ± 0.006 0.503 ± 0.017
LG-GNN 0.026 ± 0.000 0.528 ± 0.029 0.504 ± 0.006 0.506 ± 0.015
PLSG-GNN 0.023 ± 0.002 0.511 ± 0.017 0.501 ± 0.013 0.519 ± 0.002

rho=log(n)/n, layers=4 GCN 0.693 ± 0.000 0.304 ± 0.027 0.304 ± 0.015 0.518 ± 0.005
LG-GNN 0.026 ± 0.000 0.498 ± 0.017 0.486 ± 0.015 0.500 ± 0.013
PLSG-GNN 0.024 ± 0.000 0.546 ± 0.018 0.505 ± 0.018 0.498 ± 0.016
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K.4. Geometric Graph

We generate points uniformly on Sd and connect two points if ⟨Xi, Xj⟩ ≥ t. For the following experiment, we chose d = 11
and t = 0.3. This corresponds to a probability of about 0.15.

Table 16. Geometric Graph with threshold 0.2 (corresponding to a connection probability of ≈ 0.26)

Cross Entropy Prob Ratio @ 100 Prob Ratio @ 500 AUC ROC
Parameters Model

rho=1, layers=2 GCN 0.573 ± 0.015 1.000 ± 0.000 0.996 ± 0.002 0.873 ± 0.020
LG-GNN 0.358 ± 0.009 1.000 ± 0.000 0.999 ± 0.001 0.915 ± 0.007
PLSG-GNN 0.350 ± 0.013 0.997 ± 0.005 0.999 ± 0.002 0.917 ± 0.010

rho=1, layers=4 GCN 0.693 ± 0.000 0.813 ± 0.021 0.733 ± 0.079 0.591 ± 0.016
LG-GNN 0.303 ± 0.004 1.000 ± 0.000 1.000 ± 0.000 0.956 ± 0.001
PLSG-GNN 0.298 ± 0.004 1.000 ± 0.000 1.000 ± 0.000 0.958 ± 0.001

rho=1/sqrt(n), layers=2 GCN 0.693 ± 0.000 0.333 ± 0.017 0.216 ± 0.017 0.840 ± 0.008
LG-GNN 0.046 ± 0.003 0.523 ± 0.037 0.311 ± 0.021 0.818 ± 0.022
PLSG-GNN 0.045 ± 0.002 0.423 ± 0.054 0.244 ± 0.020 0.842 ± 0.017

rho=1/sqrt(n), layers=4 GCN 0.693 ± 0.000 0.313 ± 0.021 0.207 ± 0.013 0.848 ± 0.021
LG-GNN 0.045 ± 0.001 0.570 ± 0.016 0.311 ± 0.010 0.823 ± 0.010
PLSG-GNN 0.045 ± 0.001 0.510 ± 0.014 0.289 ± 0.003 0.843 ± 0.013

rho=log(n)/n, layers=2 GCN 0.693 ± 0.000 0.003 ± 0.005 0.012 ± 0.004 0.610 ± 0.026
LG-GNN 0.018 ± 0.000 0.210 ± 0.029 0.276 ± 0.005 0.616 ± 0.018
PLSG-GNN 0.018 ± 0.001 0.063 ± 0.037 0.123 ± 0.033 0.631 ± 0.027

rho=log(n)/n, layers=4 GCN 0.693 ± 0.000 0.007 ± 0.009 0.035 ± 0.007 0.607 ± 0.002
LG-GNN 0.019 ± 0.000 0.147 ± 0.012 0.191 ± 0.017 0.569 ± 0.015
PLSG-GNN 0.018 ± 0.000 0.107 ± 0.012 0.143 ± 0.018 0.607 ± 0.010
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