Alan Chung

Email: alanchung2000@gmail.com | Personal Website: achung72.github.io

Education

Harvard University PhD Candidate, Department of Statistics Fields of Research: Probability Theory, Machine Learning Theory	Sep 2022 - Present
Princeton University, BA Mathematics Graduated with High Honors: Department of Mathematics. GPA: 3.96 Thesis: Weak Solutions of the Fokker-Planck Equation Through Particle Systems Interacting Through Their Ranks	Sep 2018 - May 2022
Publications	
Statistical Guarantees for Link Prediction using Graph Neural Networks Alan Chung, Amin Saberi, Morgane Austern. Submitted. arxiv.org/abs/2402.02692	2024
When is Partially Observable Reinforcement Learning Not Scary? Qinghua Liu, Alan Chung, Csaba Szepesvári, Chi Jin. Conference on Learning Theory (COLT). arxiv.org/abs/2204.08967	2022
Experience	
Academic Programs Attended the Princeton Machine Learning Theory Summer School	2023
Citadel Securities, Quantitative Research Intern Investigated the relationship between the liquid/illiquid hours in the futures market.	Jun 2021 - Aug 2021
Teaching Harvard STAT212 and STAT210 (Probability Theory I and II); Princeton COS324 (ML), CO	S302 (Math for ML)
Awards & Achievements	
Recipient of the National Science Foundation GRFP Grant US Mathematics Olympiad Qualifier; US Physics Olympiad Honorable Mention; US Computing Olympiad, Gold Division	
Skills	
Programming: Java, Python, C++ Languages: English (Native), Mandarin (Proficient), Spanish (Proficient)	
Ongoing Projects	

Large Deviation Principles for Eigenvalues of Random Matrices

with Professor Mark Sellke (Harvard) and Professor Ben McKenna (Georgia Tech)

• The spectrum of random matrix ensembles converge to deterministic limiting distributions as their size approaches infinity (e.g., the semicircle law). We compute the exponential rate at which the probability of an eigenvalue existing outside of this limiting distribution approaches 0. Our techniques are applicable to a more general range of settings and models than previous methods.

On High Dimensional Central Limit Theorems

with Professor Morgane Austern (Harvard)

• We study the high-dimensional central limit theorem. We work to improve upon previous bounds, relax conditions required by previous works, and extend these results to new distance metrics. High-dimensional data is increasingly relevant in modern datasets; for example, in genomics or financial data.